]> AND Private Git Repository - kahina_paper1.git/blobdiff - elsarticle-template.bbl
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
new
[kahina_paper1.git] / elsarticle-template.bbl
index 606edd7bb4fa9ff5f20e5315a0183eb97db4d86d..f884705eb947b26dba56d2f4bae7000331bc6b13 100644 (file)
-\begin{thebibliography}{10}\r
-\expandafter\ifx\csname url\endcsname\relax\r
-  \def\url#1{\texttt{#1}}\fi\r
-\expandafter\ifx\csname urlprefix\endcsname\relax\def\urlprefix{URL }\fi\r
-\expandafter\ifx\csname href\endcsname\relax\r
-  \def\href#1#2{#2} \def\path#1{#1}\fi\r
-\r
-\bibitem{Weierstrass03}\r
-K.~Weierstrass, Neuer beweis des satzes, dass jede ganze rationale function\r
-  einer veranderlichen dagestellt werden kann als ein product aus linearen\r
-  functionen derselben veranderlichen, Ges. Werke 3 (1903) 251--269.\r
-\r
-\bibitem{Ilie50}\r
-L.~Ilieff, On the approximations of newton, Annual Sofia Univ~(46) (1950)\r
-  167--171.\r
-\newblock \href {http://dx.doi.org/10.1016/0003-4916(63)90068-X}\r
-  {\path{doi:10.1016/0003-4916(63)90068-X}}.\r
-\r
-\bibitem{Docev62}\r
-K.~Docev, An alternative method of newton for simultaneous calculation of all\r
-  the roots of a given algebraic equation, Phys. Math. J~(5) (1962) 136--139.\r
-\r
-\bibitem{Durand60}\r
-E.~Durand, Solution numerique des equations algebriques, vol. 1, equations du\r
-  type f(x)=0, racines d'une polynome Vol.1.\r
-\r
-\bibitem{Kerner66}\r
-I.~Kerner, Ein gesamtschritteverfahren zur berechnung der nullstellen von\r
-  polynomen~(8) (1966) 290--294.\r
-\r
-\bibitem{Borch-Supan63}\r
-W.~Borch-Supan, A posteriori error for the zeros of polynomials~(5) (1963)\r
-  380--398.\r
-\r
-\bibitem{Ehrlich67}\r
-L.~Ehrlich, A modified newton method for polynomials, Comm. Ass. Comput.\r
-  Mach.~(10) (1967) 107--108.\r
-\r
-\bibitem{Aberth73}\r
-O.~Aberth, Iteration methods for finding all zeros of a polynomial\r
-  simultaneously, Mathematics of Computation 27~(122) (1973) 339--344.\r
-\newblock \href {http://dx.doi.org/10.1016/0003-4916(63)90068-X}\r
-  {\path{doi:10.1016/0003-4916(63)90068-X}}.\r
-\r
-\bibitem{Loizon83}\r
-G.~Loizon, Higher-order iteration functions for simultaneously approximating\r
-  polynomial zeros, Intern. J. Computer Math~(14) (1983) 45--58.\r
-\r
-\bibitem{Freeman89}\r
-T.~Freeman, Calculating polynomial zeros on a local memory parallel computer,\r
-  Parallel Computing~(12) (1989) 351--358.\r
-\r
-\bibitem{Freemanall90}\r
-T.~Freeman, R.~Brankin, Asynchronous polynomial zero-finding algorithms,\r
-  Parallel Computing~(17) (1990) 673--681.\r
-\r
-\bibitem{Raphaelall01}\r
-R.~Couturier, F.~Spetiri, Extraction de racines dans des polynômes creux de\r
-  degrées élevés.rsrcp (réseaux et systèmes répartis, calculateurs\r
-  parallèles), Algorithmes itératifs paralléles et distribués 1~(13) (1990)\r
-  67--81.\r
-\r
-\bibitem{CUDA10}\r
-Compute Unified Device Architecture Programming Guide Version 3.0.\r
-\r
-\bibitem{Kahinall14}\r
-K.~Ghidouche, R.~Couturie, A.~Sider, parallel implementation of the\r
-  durand-kerner algorithm for polynomial root-finding on gpu, IEEE. Conf. on\r
-  advanced Networking, Distributed Systems and Applications (2014) 53--57.\r
-\r
-\bibitem{Bini96}\r
-D.~Bini, Numerical computation of polynomial zeros by means of aberth s method,\r
-  Numerical Algorithms 13~(4) (1996) 179--200.\r
-\r
-\bibitem{Ostrowski41}\r
-A.~Ostrowski, On a theorem by j.l. walsh concerning the moduli of roots of\r
-  algebraic equations,bull. a.m.s., Algorithmes itératifs paralléles et\r
-  distribués 1~(47) (1941) 742--746.\r
-\r
-\bibitem{Karimall98}\r
-K.~Rhofir, F.~Spies, J.-C. Miellou, Perfectionnements de la méthode asynchrone\r
-  de durand-kerner pour les polynômes complexes, Calculateurs Parallèles\r
-  10~(4) (1998) 449--458.\r
-\r
-\bibitem{Mirankar68}\r
-W.~Mirankar, Parallel methods for approximating the roots of a function, IBM\r
-  Res Dev 30 (1968) 297--301.\r
-\r
-\bibitem{Mirankar71}\r
-W.~Mirankar, A survey of parallelism in numerical analysis, SIAM Rev (1971)\r
-  524--547.\r
-\r
-\bibitem{Schedler72}\r
-G.~Schedler, Parallel iteration methods in complexity of computer\r
-  communications, Commun ACM (1967) 286--290.\r
-\r
-\bibitem{Winogard72}\r
-S.~Winogard, Parallel iteration methods in complexity of computer\r
-  communications, Plenum, New York.\r
-\r
-\bibitem{Benall68}\r
-M.~Ben-Or, E.~Feig, D.~Kozzen, P.~Tiwary, A fast parallel algorithm for\r
-  determining all roots of a polynomial with real roots, Int: Proc of ACM\r
-  (1968) 340--349.\r
-\r
-\bibitem{Jana06}\r
-P.~Jana, Polynomial interpolation and polynomial root finding on otis-mesh,\r
-  Parallel Comput 32~(3) (2006) 301--312.\r
-\r
-\bibitem{Janall99}\r
-P.~Jana, B.~Sinha, R.~D. Gupta, Efficient parallel algorithms for finding\r
-  polynomial zeroes, Proc of the 6th int conference on advance computing, CDAC,\r
-  Pune University Campus,India 15~(3) (1999) 189--196.\r
-\r
-\bibitem{Riceall06}\r
-T.~Rice, L.~Jamieson, A highly parallel algorithm for root extraction, IEEE\r
-  Trans Comp 38~(3) (2006) 443--449.\r
-\r
-\bibitem{Azad07}\r
-H.~Azad, The performance of synchronous parallel polynomial root extraction on\r
-  a ring multicomputer, Clust Comput 2~(10) (2007) 167--174.\r
-\r
-\bibitem{Gemignani07}\r
-L.~Gemignani, Structured matrix methods for polynomial root finding., n: Proc\r
-  of the 2007 Intl symposium on symbolic and algebraic computation (2007)\r
-  175--180.\r
-\r
-\bibitem{Kalantari08}\r
-B.~Kalantari, Polynomial root finding and polynomiography., World\r
-  Scientifict,New Jersey.\r
-\r
-\bibitem{Skachek08}\r
-V.~Skachek, Structured matrix methods for polynomial root finding., n: Proc of\r
-  the 2007 Intl symposium on symbolic and algebraic computation (2008)\r
-  175--180.\r
-\r
-\bibitem{Zhancall08}\r
-X.~Zhanc, Z.~M.~Wan, A constrained learning algorithm for finding multiple real\r
-  roots of polynomial, In: Proc of the 2008 intl symposium on computational\r
-  intelligence and design (2008) 38--41.\r
-\r
-\bibitem{Zhuall08}\r
-W.~Zhu, w.~Zeng, D.~Lin, an adaptive algorithm finding multiple roots of\r
-  polynomials, Lect Notes Comput Sci~(5262) (2008) 674--681.\r
-\r
-\bibitem{Bini04}\r
-D.~Bini, L.~Gemignani, Inverse power and durand kerner iterations for\r
-  univariate polynomial root finding, Comput Math Appl~(47) (2004) 447--459.\r
-\r
-\bibitem{Cosnard90}\r
-M.~Cosnard, P.~Fraigniaud, Finding the roots of a polynomial on an mimd\r
-  multicomputer, Parallel Comput 15~(3) (1990) 75--85.\r
-\r
-\bibitem{Jana99}\r
-P.~Jana, Finding polynomial zeroes on a multi-mesh of trees (mmt), In: Proc of\r
-  the 2nd int conference on information technology (1999) 202--206.\r
-\r
-\bibitem{NVIDIA10}\r
-NVIDIA, NVIDIA CUDA C Programming Guide, Vol.~7 of 001, PG, 2015.\r
-\r
-\end{thebibliography}\r
+\begin{thebibliography}{10}
+\expandafter\ifx\csname url\endcsname\relax
+  \def\url#1{\texttt{#1}}\fi
+\expandafter\ifx\csname urlprefix\endcsname\relax\def\urlprefix{URL }\fi
+\expandafter\ifx\csname href\endcsname\relax
+  \def\href#1#2{#2} \def\path#1{#1}\fi
+
+\bibitem{Weierstrass03}
+K.~Weierstrass, Neuer beweis des satzes, dass jede ganze rationale function
+  einer veranderlichen dagestellt werden kann als ein product aus linearen
+  functionen derselben veranderlichen, Ges. Werke 3 (1903) 251--269.
+
+\bibitem{Ilie50}
+L.~Ilieff, On the approximations of newton, Annual Sofia Univ~(46) (1950)
+  167--171.
+\newblock \href {http://dx.doi.org/10.1016/0003-4916(63)90068-X}
+  {\path{doi:10.1016/0003-4916(63)90068-X}}.
+
+\bibitem{Docev62}
+K.~Docev, An alternative method of newton for simultaneous calculation of all
+  the roots of a given algebraic equation, Phys. Math. J~(5) (1962) 136--139.
+
+\bibitem{Durand60}
+E.~Durand, Solution numerique des equations algebriques, vol. 1, equations du
+  type f(x)=0, racines d'une polynome Vol.1.
+
+\bibitem{Kerner66}
+I.~Kerner, Ein gesamtschritteverfahren zur berechnung der nullstellen von
+  polynomen~(8) (1966) 290--294.
+
+\bibitem{Borch-Supan63}
+W.~Borch-Supan, A posteriori error for the zeros of polynomials~(5) (1963)
+  380--398.
+
+\bibitem{Ehrlich67}
+L.~Ehrlich, A modified newton method for polynomials, Comm. Ass. Comput.
+  Mach.~(10) (1967) 107--108.
+
+\bibitem{Aberth73}
+O.~Aberth, Iteration methods for finding all zeros of a polynomial
+  simultaneously, Mathematics of Computation 27~(122) (1973) 339--344.
+\newblock \href {http://dx.doi.org/10.1016/0003-4916(63)90068-X}
+  {\path{doi:10.1016/0003-4916(63)90068-X}}.
+
+\bibitem{Loizon83}
+G.~Loizon, Higher-order iteration functions for simultaneously approximating
+  polynomial zeros, Intern. J. Computer Math~(14) (1983) 45--58.
+
+\bibitem{Freeman89}
+T.~Freeman, Calculating polynomial zeros on a local memory parallel computer,
+  Parallel Computing~(12) (1989) 351--358.
+
+\bibitem{Freemanall90}
+T.~Freeman, R.~Brankin, Asynchronous polynomial zero-finding algorithms,
+  Parallel Computing~(17) (1990) 673--681.
+
+\bibitem{Raphaelall01}
+R.~Couturier, F.~Spetiri, Extraction de racines dans des polynômes creux de
+  degrées élevés.rsrcp (réseaux et systèmes répartis, calculateurs
+  parallèles), Algorithmes itératifs paralléles et distribués 1~(13) (1990)
+  67--81.
+
+\bibitem{CUDA10}
+Compute Unified Device Architecture Programming Guide Version 3.0.
+
+\bibitem{Kahinall14}
+K.~Ghidouche, R.~Couturie, A.~Sider, parallel implementation of the
+  durand-kerner algorithm for polynomial root-finding on gpu, IEEE. Conf. on
+  advanced Networking, Distributed Systems and Applications (2014) 53--57.
+
+\bibitem{Bini96}
+D.~Bini, Numerical computation of polynomial zeros by means of aberth s method,
+  Numerical Algorithms 13~(4) (1996) 179--200.
+
+\bibitem{Ostrowski41}
+A.~Ostrowski, On a theorem by j.l. walsh concerning the moduli of roots of
+  algebraic equations,bull. a.m.s., Algorithmes itératifs paralléles et
+  distribués 1~(47) (1941) 742--746.
+
+\bibitem{Karimall98}
+K.~Rhofir, F.~Spies, J.-C. Miellou, Perfectionnements de la méthode asynchrone
+  de durand-kerner pour les polynômes complexes, Calculateurs Parallèles
+  10~(4) (1998) 449--458.
+
+\bibitem{Mirankar68}
+W.~Mirankar, Parallel methods for approximating the roots of a function, IBM
+  Res Dev 30 (1968) 297--301.
+
+\bibitem{Mirankar71}
+W.~Mirankar, A survey of parallelism in numerical analysis, SIAM Rev (1971)
+  524--547.
+
+\bibitem{Schedler72}
+G.~Schedler, Parallel iteration methods in complexity of computer
+  communications, Commun ACM (1967) 286--290.
+
+\bibitem{Winogard72}
+S.~Winogard, Parallel iteration methods in complexity of computer
+  communications, Plenum, New York.
+
+\bibitem{Benall68}
+M.~Ben-Or, E.~Feig, D.~Kozzen, P.~Tiwary, A fast parallel algorithm for
+  determining all roots of a polynomial with real roots, Int: Proc of ACM
+  (1968) 340--349.
+
+\bibitem{Jana06}
+P.~Jana, Polynomial interpolation and polynomial root finding on otis-mesh,
+  Parallel Comput 32~(3) (2006) 301--312.
+
+\bibitem{Janall99}
+P.~Jana, B.~Sinha, R.~D. Gupta, Efficient parallel algorithms for finding
+  polynomial zeroes, Proc of the 6th int conference on advance computing, CDAC,
+  Pune University Campus,India 15~(3) (1999) 189--196.
+
+\bibitem{Riceall06}
+T.~Rice, L.~Jamieson, A highly parallel algorithm for root extraction, IEEE
+  Trans Comp 38~(3) (2006) 443--449.
+
+\bibitem{Azad07}
+H.~Azad, The performance of synchronous parallel polynomial root extraction on
+  a ring multicomputer, Clust Comput 2~(10) (2007) 167--174.
+
+\bibitem{Gemignani07}
+L.~Gemignani, Structured matrix methods for polynomial root finding., n: Proc
+  of the 2007 Intl symposium on symbolic and algebraic computation (2007)
+  175--180.
+
+\bibitem{Kalantari08}
+B.~Kalantari, Polynomial root finding and polynomiography., World
+  Scientifict,New Jersey.
+
+\bibitem{Skachek08}
+V.~Skachek, Structured matrix methods for polynomial root finding., n: Proc of
+  the 2007 Intl symposium on symbolic and algebraic computation (2008)
+  175--180.
+
+\bibitem{Zhancall08}
+X.~Zhanc, Z.~M.~Wan, A constrained learning algorithm for finding multiple real
+  roots of polynomial, In: Proc of the 2008 intl symposium on computational
+  intelligence and design (2008) 38--41.
+
+\bibitem{Zhuall08}
+W.~Zhu, w.~Zeng, D.~Lin, an adaptive algorithm finding multiple roots of
+  polynomials, Lect Notes Comput Sci~(5262) (2008) 674--681.
+
+\bibitem{Bini04}
+D.~Bini, L.~Gemignani, Inverse power and durand kerner iterations for
+  univariate polynomial root finding, Comput Math Appl~(47) (2004) 447--459.
+
+\bibitem{Cosnard90}
+M.~Cosnard, P.~Fraigniaud, Finding the roots of a polynomial on an mimd
+  multicomputer, Parallel Comput 15~(3) (1990) 75--85.
+
+\bibitem{Jana99}
+P.~Jana, Finding polynomial zeroes on a multi-mesh of trees (mmt), In: Proc of
+  the 2nd int conference on information technology (1999) 202--206.
+
+\bibitem{NVIDIA10}
+NVIDIA, NVIDIA CUDA C Programming Guide, Vol.~7 of 001, PG, 2015.
+
+\end{thebibliography}