]> AND Private Git Repository - kahina_paper1.git/blobdiff - mybibfile.bib
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Modif
[kahina_paper1.git] / mybibfile.bib
index b87ff2bcfc32d308a9a42b0938f123b44320edf9..690f22318220f839fdd70e96ba3c5989faa21adf 100644 (file)
-@article{Dirac1953888,\r
-  title   = "The lorentz transformation and absolute time",\r
-  journal = "Physica ",\r
-  volume  = "19",\r
-  number  = "1-–12",\r
-  pages   = "888--896",\r
-  year    = "1953",\r
-  doi     = "10.1016/S0031-8914(53)80099-6",\r
-  author  = "P.A.M. Dirac"\r
-}\r
-\r
-@article{Feynman1963118,\r
-  title   = "The theory of a general quantum system interacting with a linear dissipative system",\r
-  journal = "Annals of Physics ",\r
-  volume  = "24",\r
-  pages   = "118--173",\r
-  year    = "1963",\r
-  doi     = "10.1016/0003-4916(63)90068-X",\r
-  author  = "R.P Feynman AND F.L {Vernon Jr.}"\r
-}\r
-\r
-@Article{Aberth73,\r
-   title =   "Iteration Methods for Finding all Zeros of a Polynomial Simultaneously",\r
-  journal = "Mathematics of Computation",\r
-  volume =  "27",\r
-  number =  "122",\r
-  pages =   "339--344",\r
-  year =    "1973",\r
-       doi     = "10.1016/0003-4916(63)90068-X",\r
-  author =  "O. Aberth",\r
-       \r
-}x\r
-\r
-\r
-@Article{Ilie50,\r
-  title =   "On the approximations of Newton",\r
-  journal = "Annual Sofia Univ",\r
-  volume =  "",\r
-  number =  "46",\r
-  pages =   "167--171",\r
-  year =    "1950",\r
-  doi     = "10.1016/0003-4916(63)90068-X",\r
-       author =  "L. Ilieff",\r
-       \r
-}x\r
-@Article{Docev62,\r
-  title =   "An alternative method of Newton for simultaneous calculation of all the roots of a given algebraic equation",\r
-  journal = "Phys. Math. J",\r
-  volume =  "",\r
-  number =  "5",\r
-  pages =   "136-139",\r
-  year =    "1962",\r
-  author =  "K. Docev",\r
-}x\r
-\r
-@Article{Durand60,\r
-  title =   "Solution Numerique des Equations Algebriques, Vol. 1, Equations du Type F(x)=0, Racines d'une Polynome",\r
-  journal = "",\r
-  volume =  "Vol.1",\r
-  number =  "",\r
-  pages =   "",\r
-  year =    "1960",\r
-  author =  "E. Durand",\r
-}x\r
-\r
-@Article{Kerner66,\r
-  title =   "Ein Gesamtschritteverfahren zur Berechnung der Nullstellen von Polynomen",\r
-  journal = " ",\r
-  volume =  "",\r
-  number =  "8",\r
-  pages =   "290-294",\r
-  year =    "1966",\r
-  author =  "I. Kerner",\r
-}x\r
-\r
-@Article{Borch-Supan63,\r
-  title =   "A posteriori error for the zeros of polynomials",\r
-  journal = " ",\r
-  volume =  "",\r
-  number =  "5",\r
-  pages =   "380-398",\r
-  year =    "1963",\r
-  author =  "W. Borch-Supan",\r
-}x\r
-\r
-@Article{Ehrlich67,\r
-  title =   "A modified Newton method for polynomials",\r
-  journal = " Comm. Ass. Comput. Mach.",\r
-  volume =  "",\r
-  number =  "10",\r
-  pages =   "107-108",\r
-  year =    "1967",\r
-  author =  "L.W. Ehrlich",\r
-}x\r
-\r
-@Article{Loizon83,\r
-  title =   "Higher-order iteration functions for simultaneously approximating polynomial zeros",\r
-  journal = " Intern. J. Computer Math",\r
-  volume =  "",\r
-  number =  "14",\r
-  pages =   "45-58",\r
-  year =    "1983",\r
-  author =  "G. Loizon",\r
-}x\r
-\r
-@Article{Freeman89,\r
-  title =   " Calculating polynomial zeros on a local memory parallel computer",\r
-  journal = "  Parallel Computing",\r
-  volume =  "",\r
-  number =  "12",\r
-  pages =   "351-358",\r
-  year =    "1989",\r
-  author =  "T.L. Freeman",\r
-}x\r
-\r
-@Article{Freemanall90,\r
-  title =   " Asynchronous polynomial zero-finding algorithms",\r
-  journal = "  Parallel Computing",\r
-  volume =  "",\r
-  number =  "17",\r
-  pages =   "673-681",\r
-  year =    "1990",\r
-  author =  "T.L. Freeman AND R.K. Brankin",\r
-}x\r
-\r
-@Article{Raphaelall01,\r
-  title =   " Extraction de racines dans des polynômes creux de degrées élevés.RSRCP (Réseaux et Systèmes Répartis, Calculateurs Parallèles)",\r
-  journal = "  Algorithmes itératifs paralléles et distribués",\r
-  volume =  "1",\r
-  number =  "13",\r
-  pages =   "67-81",\r
-  year =    "1990",\r
-  author =  "R. Couturier AND F. Spetiri",\r
-}x\r
-\r
-@Article{Ostrowski41,\r
-  title =   "  On a Theorem by J.L. Walsh Concerning the Moduli of Roots of Algebraic Equations,Bull. A.M.S.",\r
-  journal = "  Algorithmes itératifs paralléles et distribués",\r
-  volume =  "1",\r
-  number =  "47",\r
-  pages =   "742-746",\r
-  year =    "1941",\r
-  author =  "A. Ostrowski",\r
-}x\r
-\r
-\r
-@Manual{CUDA10,\r
-title = {Compute Unified Device Architecture Programming Guide Version 3.0},\r
-OPTkey = {NVIDIA CUDA},\r
-OPTauthor = {•},\r
-OPTorganization = {NVIDIA CUDA},\r
-OPTaddress = {•},\r
-OPTedition = {•},\r
-OPTmonth = {March},\r
-OPTyear = {2010},\r
-OPTnote = {http://www.nvidia.com/object/cuda_develop.html},\r
-OPTannote = {•}\r
-}\r
-\r
-@Article{Kahinall14,\r
-  title =   "  parallel implementation of the Durand-Kerner algorithm for polynomial root-finding on GPU",\r
-  journal = "  IEEE. Conf. on advanced Networking, Distributed Systems and Applications",\r
-  volume =  "",\r
-  number =  "",\r
-  pages =   "53-57",\r
-  year =    "2014",\r
-  author =  "K. Ghidouche AND R. Couturie AND A. Sider",\r
-}x\r
-\r
-@Article{Karimall98,\r
-  \r
-  title =   "  Perfectionnements de la méthode asynchrone de Durand-Kerner pour les polynômes complexes",\r
-  journal = "  Calculateurs Parallèles",\r
-  volume =  "10",\r
-  number =  "4",\r
-  pages =   "449-458",\r
-  year =    "1998",\r
-  author =  "K. Rhofir         AND F. Spies AND Jean-Claude Miellou",\r
-}x\r
-\r
-@Article{Bini96,\r
\r
-  title =   "  Numerical computation of polynomial zeros by means of Aberth s method",\r
-  journal = " Numerical Algorithms",\r
-  volume =  "13",\r
-  number =  "4",\r
-  pages =   "179-200",\r
-  year =    "1996",\r
-  author =  "D. Bini",\r
-}x\r
-\r
-@Article{Mirankar68,\r
-  title =   "  Parallel methods for approximating the roots of a function",\r
-  journal = " IBM Res Dev",\r
-  volume =  "30",\r
-  number =  "",\r
-  pages =   "297-301",\r
-  year =    "1968",\r
-  author =  "WL. Mirankar",\r
-}x\r
-\r
-@Article{Mirankar71,\r
-  title =   "  A survey of parallelism in numerical analysis",\r
-  journal = " SIAM Rev",\r
-  volume =  "",\r
-  number =  "",\r
-  pages =   "524-547",\r
-  year =    "1971",\r
-  author =  "WL. Mirankar",\r
-}x\r
-\r
-@Article{Schedler72,\r
-  title =   "  Parallel iteration methods in complexity of computer communications",\r
-  journal = " Commun ACM ",\r
-  volume =  "",\r
-  number =  "",\r
-  pages =   "286-290",\r
-  year =    "1967",\r
-  author =  "GS. Schedler",\r
-}x\r
-\r
-@Article{Winogard72,\r
-  title =   "  Parallel iteration methods in complexity of computer communications",\r
-  journal = " Plenum, New York",\r
-  volume =  "",\r
-  number =  "",\r
-  pages =   "",\r
-  year =    "1972",\r
-  author =  "S. Winogard",\r
-}x\r
-\r
-@Article{Benall68,\r
-  title =   " A fast parallel algorithm for determining all roots of a polynomial with real roots",\r
-  journal = " Int: Proc of ACM",\r
-  volume =  "",\r
-  number =  "",\r
-  pages =   "340-349",\r
-  year =    "1968",\r
-  author =  "M. Ben-Or AND E. Feig AND D. Kozzen AND P. Tiwary",\r
-}x\r
-\r
-@Article{Riceall06,\r
-  title =   "  A highly parallel algorithm for root extraction",\r
-  journal = " IEEE Trans Comp",\r
-  volume =  "38",\r
-  number =  "3",\r
-  pages =   "443-449",\r
-  year =    "2006",\r
-  author =  "TA. Rice AND LH. Jamieson",\r
-}x\r
-\r
-@Article{Cosnard90,\r
-  title =   " Finding the roots of a polynomial on an MIMD multicomputer",\r
-  journal = " Parallel Comput",\r
-  volume =  "15",\r
-  number =  "3",\r
-  pages =   "75-85",\r
-  year =    "1990",\r
-  author =  "M. Cosnard AND P. Fraigniaud",\r
-}x\r
-\r
-@Article{Janall99,\r
-  title =   " Efficient parallel algorithms for finding polynomial zeroes",\r
-  journal = "Proc of the 6th int conference on advance computing, CDAC, Pune University Campus,India",\r
-  volume =  "15",\r
-  number =  "3",\r
-  pages =   "189-196",\r
-  year =    "1999",\r
-  author =  "PK. Jana AND BP. Sinha AND R. Datta Gupta",\r
-}x\r
-\r
-@Article{Jana06,\r
-  title =   " Polynomial interpolation and polynomial root finding on OTIS-Mesh",\r
-  journal = " Parallel Comput",\r
-  volume =  "32",\r
-  number =  "3",\r
-  pages =   "301-312",\r
-  year =    "2006",\r
-  author =  "PK. Jana",\r
-}x\r
-@Article{Kalantari08,\r
-  title =   " Polynomial root finding and polynomiography.",\r
-  journal = " World Scientifict,New Jersey",\r
-  volume =  "",\r
-  number =  "",\r
-  pages =   "",\r
-  year =    "",\r
-  author =  "B. Kalantari",\r
-}x\r
-\r
-@Article{Gemignani07,\r
-  title =   " Structured matrix methods for polynomial root finding.",\r
-  journal = " n: Proc of the 2007 Intl symposium on symbolic and algebraic computation",\r
-  volume =  "",\r
-  number =  "",\r
-  pages =   "175-180",\r
-  year =    "2007",\r
-  author =  "L. Gemignani",\r
-}x\r
-\r
-\r
-\r
-@Article{Skachek08,\r
-  title =   " Structured matrix methods for polynomial root finding.",\r
-  journal = " n: Proc of the 2007 Intl symposium on symbolic and algebraic computation",\r
-  volume =  "",\r
-  number =  "",\r
-  pages =   "175-180",\r
-  year =    "2008",\r
-  author =  "V. Skachek",\r
-}x\r
-\r
-@BOOK{Skachek008,\r
-  AUTHOR =       {V. Skachek},\r
-  editor =       {\7f},\r
-  TITLE =        {Probabilistic algorithm for finding roots of linearized polynomials},\r
-  PUBLISHER =    {codes and cryptography. Kluwer},\r
-  YEAR =         {2008},\r
-  volume =       {\7f},\r
-  number =       {\7f},\r
-  series =       {\7f},\r
-  address =      {\7f},\r
-  edition =      {Design},\r
-  month =        {\7f},\r
-  note =         {\7f},\r
-  abstract =     {\7f},\r
-  isbn =         {\7f},\r
-  price =        {\7f},\r
-  keywords =     {\7f},\r
-  source =       {\7f},\r
-}x\r
-\r
-@Article{Zhancall08,\r
-  title =   " A constrained learning algorithm for finding multiple real roots of polynomial",\r
-  journal = " In: Proc of the 2008 intl symposium on computational intelligence and design",\r
-  volume =  "",\r
-  number =  "",\r
-  pages =   "38-41",\r
-  year =    "2008",\r
-  author =  "X. Zhanc AND M. Wan,Z.Yi",\r
-}x\r
-\r
-\r
-@Article{Zhuall08,\r
-  title =   " an adaptive algorithm finding multiple roots of polynomials",\r
-  journal = " Lect Notes Comput Sci ",\r
-  volume =  "",\r
-  number =  "5262",\r
-  pages =   "674-681",\r
-  year =    "2008",\r
-  author =  "W. Zhu AND w. Zeng AND D. Lin",\r
-}x\r
-@Article{Azad07,\r
-  title =   " The performance of synchronous parallel polynomial root extraction on a ring multicomputer",\r
-  journal = " Clust Comput ",\r
-  volume =  "2",\r
-  number =  "10",\r
-  pages =   "167-174",\r
-  year =    "2007",\r
-    author =  "HS. Azad",\r
-}x\r
-\r
-\r
-\r
-\r
-@Article{Bini04,\r
-  title =   " Inverse power and Durand Kerner iterations for univariate polynomial root finding",\r
-  journal = " Comput Math Appl ",\r
-  volume =  "",\r
-  number =  "47",\r
-  pages =   "447-459",\r
-  year =    "2004",\r
-  author =  "DA. Bini AND L. Gemignani",\r
-}x\r
-\r
-@Article{Jana99,\r
-  title =   " Finding polynomial zeroes on a Multi-mesh of trees (MMT)",\r
-  journal = " In: Proc of the 2nd int conference on information technology",\r
-  volume =  "",\r
-  number =  "",\r
-  pages =   "202-206",\r
-  year =    "1999",\r
-  author =  "PK. Jana",\r
-}x\r
-\r
-@Article{Weierstrass03,\r
-  title =   " Neuer Beweis des Satzes, dass jede ganze rationale function einer veranderlichen dagestellt werden kann als ein product aus linearen functionen derselben veranderlichen",\r
-  journal = " Ges. Werke",\r
-  volume =  "3",\r
-  number =  "",\r
-  pages =   "251-269",\r
-  year =    "1903",\r
-  author =  "K. Weierstrass",\r
-}x\r
-\r
-\r
-\r
-@BOOK{NVIDIA10,\r
-  AUTHOR =       {NVIDIA},\r
-  editor =       {Design Guide},\r
-  TITLE =        {NVIDIA CUDA C Programming Guide},\r
-  PUBLISHER =    {PG},\r
-  YEAR =         {2015},\r
-  volume =       {7},\r
-  number =       {02829},\r
-  series =       {001},\r
-  month =        {march},\r
-}x\r
+@InCollection{newt1670,
+  author =     "Isaac Newton",
+  year =       "1670--71?",
+  title =      "Tractatus de Methodis Serierum et Fluxionum",
+  booktitle =  "The Mathematical Papers of Isaac Newton, III",
+  editor =     "D. T. Whiteside",
+  pages =      "32--353",
+  publisher =  "Cambridge University Press, Cambridge",
+  kwds =       "na, history, Newton's method",
+}x
+
+@Book{Cardano15,
+  author =     "Girolamo Cardano",
+  title =      "Ars Magna or The Rules of Algebra, 1545",
+  editor =     "T. Richard Witmer",
+  publisher =  "MIT",
+  year =       "1968",
+}x
+
+@Article{NH-Abel26,
+   title =   "Beweis der Unmöglichkeit, algebraische Gleichungen von höheren Graden als dem vierten allgemein aufzulösen",
+  journal = "J. reine angew, Math",
+  volume =  "1",
+  number =  "1",
+  pages =   "65--84",
+  year =    "1826",
+  author =  "Niels Henrik Abel",
+       
+}x
+
+
+@Article{Aberth73,
+   title =   "Iteration Methods for Finding all Zeros of a Polynomial Simultaneously",
+  journal = "Mathematics of Computation",
+  volume =  "27",
+  number =  "122",
+  pages =   "339--344",
+  year =    "1973",
+  author =  "O. Aberth",
+       
+}x
+
+@Article{Ilie50,
+  title =   "On the approximations of Newton",
+  journal = "Annual Sofia Univ",
+  volume =  "46",
+  number =  "",
+  pages =   "167--171",
+  year =    "1950",
+  author =  "L. Ilieff",
+       
+}x
+
+@Article{Docev62,
+  title =   "An alternative method of Newton for simultaneous calculation of all the roots of a given algebraic equation",
+  journal = "Phys. Math. J",
+  volume =  "5",
+  number =  "",
+  pages =   "136-139",
+  year =    "1962",
+  author =  "K. Docev",
+}x
+
+@Book{Durand60,
+  author =     "\'E. Durand",
+  publisher =  "Masson, Paris",
+  title =      "Solutions num\'eriques des \'equations alg\'ebriques.
+                {T}ome {I}: \'{E}quations du type {$F(x)=0$}; racines
+                d'un polyn\^ome",
+  year =       "1960",
+}x
+
+@Article{Kerner66,
+  author =     "Immo O. Kerner",
+  title =      "{Ein Gesamtschrittverfahren zur Berechnung der
+                Nullstellen von Polynomen}. ({German}) [{A} Complete
+                Step Method for the Computation of Zeros of
+                Polynomials]",
+  journal =    "Numerische Mathematik",
+  volume =     "8",
+  number =     "3",
+  pages =      "290--294",
+  month =      may,
+  year =       "1966",
+  CODEN =      "NUMMA7",
+  ISSN =       "0029-599X (print), 0945-3245 (electronic)",
+  bibdate =    "Mon Oct 18 01:28:20 MDT 1999",
+  bibsource =  "http://www.math.utah.edu/pub/tex/bib/nummath.bib",
+  acknowledgement = "Nelson H. F. Beebe, University of Utah, Department
+                of Mathematics, 110 LCB, 155 S 1400 E RM 233, Salt Lake
+                City, UT 84112-0090, USA, Tel: +1 801 581 5254, FAX: +1
+                801 581 4148, e-mail: \path|beebe@math.utah.edu|,
+                \path|beebe@acm.org|, \path|beebe@computer.org|
+                (Internet), URL:
+                \path|http://www.math.utah.edu/~beebe/|",
+  fjournal =   "Numerische Mathematik",
+  journal-url =  "http://link.springer.com/journal/211",
+  language =   "German",
+}
+
+@Article{Borch-Supan63,
+  author =     "W. Boersch-Supan",
+  title =      "A Posteriori Error Bounds for the Zeros of
+                Polynomials",
+  journal =    "Numerische Mathematik",
+  volume =     "5",
+  pages =      "380--398",
+  year =       "1963",
+  CODEN =      "NUMMA7",
+  ISSN =       "0029-599X",
+  bibdate =    "Fri Jan 12 11:37:56 1996",
+  acknowledgement = "Jon Rokne, Department of Computer Science, The
+                University of Calgary, 2500 University Drive N.W.,
+                Calgary, Alberta T2N 1N4, Canada",
+}
+
+@Article{Ehrlich67,
+  title =      "A modified Newton method for polynomials",
+  author =     "Louis W. Ehrlich",
+  journal =    "Commun. ACM",
+  year =       "1967",
+  number =     "2",
+  volume =     "10",
+  bibdate =    "2003-11-20",
+  bibsource =  "DBLP,
+                http://dblp.uni-trier.de/db/journals/cacm/cacm10.html#Ehrlich67",
+  pages =      "107--108",
+  URL =        "http://doi.acm.org/10.1145/363067.363115",
+}
+@Article{Loizou83,
+  title =   "Higher-order iteration functions for simultaneously approximating polynomial zeros",
+  journal = " Intern. J. Computer Math",
+  volume =  "14",
+  number =  "1",
+  pages =   "45-58",
+  year =    "1983",
+  author =  "G. Loizou",
+}x
+
+@Article{Freeman89,
+  title =      "Calculating polynomial zeros on a local memory
+                parallel computer",
+  author =     "T. L. Freeman",
+  journal =    "Parallel Computing",
+  year =       "1989",
+  number =     "3",
+  volume =     "12",
+  bibdate =    "2011-09-09",
+  bibsource =  "DBLP,
+                http://dblp.uni-trier.de/db/journals/pc/pc12.html#Freeman89",
+  pages =      "351--358",
+  URL =        "http://dx.doi.org/10.1016/0167-8191(89)90093-8",
+}
+@Article{Freemanall90,
+  title =   " Asynchronous polynomial zero-finding algorithms",
+  journal = "  Parallel Computing",
+  volume =  "17",
+  number =  "",
+  pages =   "673-681",
+  year =    "1990",
+  author =  "T.L. Freeman AND R.K. Brankin",
+}x
+
+@Article{Raphaelall01,
+  title =   " Extraction de racines dans des polynômes creux de degrées élevés. {RSRCP} (Réseaux et Systèmes Répartis, Calculateurs Parallèles)",
+  journal = "  Algorithmes itératifs paralléles et distribués",
+  volume =  "1",
+  number =  "13",
+  pages =   "67-81",
+  year =    "1990",
+  author =  "R. Couturier AND F. Spies",
+}x
+
+@Article{Ostrowski41,
+  title =   "  On a Theorem by {J. L. Walsh} Concerning the Moduli of Roots of Algebraic Equations. A.M.S.",
+  journal = "  Algorithmes itératifs paralléles et distribués",
+  volume =  "1",
+  number =  "47",
+  pages =   "742-746",
+  year =    "1941",
+  author =  "A. Ostrowski",
+}x
+
+
+@Manual{CUDA10,
+title = {Compute Unified Device Architecture Programming Guide Version 3.0},
+OPTkey = {NVIDIA CUDA},
+OPTauthor = {•},
+OPTorganization = {NVIDIA CUDA},
+OPTaddress = {•},
+OPTedition = {•},
+OPTmonth = {March},
+OPTyear = {2010},
+OPTnote = {http://www.nvidia.com/object/cuda_develop.html},
+OPTannote = {•}
+}
+
+@Article{Kahinall14,
+  title =   "Parallel implementation of the {D}urand-{K}erner algorithm for polynomial root-finding on {GPU}",
+  journal = "IEEE. Conf. on advanced Networking, Distributed Systems and Applications",
+  volume =  "",
+  number =  "",
+  pages =   "53-57",
+  year =    "2014",
+  author =  "K. Ghidouche AND R. Couturier AND A. Sider",
+}x
+
+@Article{Karimall98,
+  
+  title =   "  Perfectionnements de la méthode asynchrone de {D}urand-{K}erner pour les polynômes complexes",
+  journal = "  Calculateurs Parallèles",
+  volume =  "10",
+  number =  "4",
+  pages =   "449-458",
+  year =    "1998",
+  author =  "K. Rhofir         AND F. Spies AND Jean-Claude Miellou",
+}x
+
+@Article{Bini96,
+  title =      "Numerical computation of polynomial zeros by means of
+                Aberth's method",
+  author =     "D. Bini",
+  journal =    "Numerical Algorithms",
+  year =       "1996",
+  number =     "2",
+  volume =     "13",
+  bibdate =    "2015-09-27",
+  bibsource =  "DBLP,
+                http://dblp.uni-trier.de/db/journals/na/na13.html#Bini96",
+  pages =      "179--200",
+  URL =        "http://dx.doi.org/10.1007/BF02207694",
+}
+@Article{Mirankar68,
+  title =   "  Parallel methods for approximating the roots of a function",
+  journal = " IBM Res Dev",
+  volume =  "13",
+  number =  "",
+  pages =   "297-301",
+  year =    "1968",
+  author =  "WL. Mirankar",
+}x
+
+@Article{Mirankar71,
+  title =   "  A survey of parallelism in numerical analysis",
+  journal = " SIAM Rev",
+  volume =  "13",
+  number =  "",
+  pages =   "524-547",
+  year =    "1971",
+  author =  "WL. Mirankar",
+}x
+
+@Article{Schedler72,
+  title =   " Parallel Numerical Methods for Solution of Equations",
+  journal = " Commun ACM ",
+  volume =  "10",
+  number =  "",
+  pages =   "286-290",
+  year =    "1967",
+  author =  "GS. Schedler",
+}x
+
+@InProceedings{Winogard72,
+  title =      "Parallel Iteration Methods",
+  author =     "S. Winograd",
+  bibdate =    "2011-09-13",
+  bibsource =  "DBLP,
+                http://dblp.uni-trier.de/db/conf/coco/cocc1972.html#Winograd72",
+  booktitle =  "Complexity of Computer Computations",
+  publisher =  "Plenum Press, New York",
+  year =       "1972",
+  editor =     "Raymond E. Miller and James W. Thatcher",
+  ISBN =       "0-306-30707-3",
+  pages =      "53--60",
+  series =     "The IBM Research Symposia Series",
+}x
+
+@Article{Benall68,
+  title =   " A fast parallel algorithm for determining all roots of a polynomial with real roots",
+  journal = " Int: Proc of ACM",
+  volume =  "",
+  number =  "",
+  pages =   "340-349",
+  year =    "1988",
+  author =  "M. Ben-Or AND E. Feig AND D. Kozzen AND P. Tiwary",
+}x
+
+@Article{Riceall06,
+  title =   "  A highly parallel algorithm for root extraction",
+  journal = " IEEE Trans Comp",
+  volume =  "38",
+  number =  "3",
+  pages =   "443-449",
+  year =    "2006",
+  author =  "TA. Rice AND LH. Jamieson",
+}x
+
+@Article{Cosnard90,
+  title =   " Finding the roots of a polynomial on an MIMD multicomputer",
+  journal = " Parallel Comput",
+  volume =  "15",
+  number =  "3",
+  pages =   "75-85",
+  year =    "1990",
+  author =  "M. Cosnard AND P. Fraigniaud",
+}x
+
+@Article{Janall99,
+  title =   " Efficient parallel algorithms for finding polynomial zeroes",
+  journal = "Proc of the 6th int conference on advance computing, CDAC, Pune University Campus,India",
+  volume =  "15",
+  number =  "3",
+  pages =   "189-196",
+  year =    "1999",
+  author =  "PK. Jana AND BP. Sinha AND R. Datta Gupta",
+}x
+
+@Article{Jana06,
+  title =   " Polynomial interpolation and polynomial root finding on OTIS-Mesh",
+  journal = " Parallel Comput",
+  volume =  "32",
+  number =  "3",
+  pages =   "301-312",
+  year =    "2006",
+  author =  "PK. Jana",
+}x
+
+
+@Book{Kalantari08,
+author = {B. Kalantari},
+title = {Polynomial root finding and polynomiography},
+publisher = {World Scientifict},
+year = {2008},
+OPTkey = {•},
+OPTvolume = {•},
+OPTnumber = {•},
+OPTseries = {•},
+OPTaddress = {•},
+OPTmonth = {December},
+OPTnote = {•},
+OPTannote = {•}
+}
+
+Article{Skachek08,
+  title =   " Structured matrix methods for polynomial root finding",
+  journal = " n: Proc of the 2007 Intl symposium on symbolic and algebraic computation",
+  volume =  "",
+  number =  "",
+  pages =   "175-180",
+  year =    "2008",
+  author =  "V. Skachek",
+}x
+
+
+
+@InProceedings{Gemignani07,
+  author =     "L. Gemignani",
+  title =      "Structured matrix methods for polynomial
+                root-finding",
+  editor =     "C. W. Brown",
+  booktitle =  "Proceedings of the 2007 International Symposium on
+                Symbolic and Algebraic Computation, July 29--August 1,
+                2007, University of Waterloo, Waterloo, Ontario,
+                Canada",
+  publisher =  "ACM Press",
+  address =    "pub-ACM:adr",
+  ISBN =       "1-59593-743-9 (print), 1-59593-742-0 (CD-ROM)",
+  isbn-13 =    "978-1-59593-743-8 (print), 978-1-59593-742-1
+                (CD-ROM)",
+  pages =      "175--180",
+  year =       "2007",
+  doi =        "http://doi.acm.org/10.1145/1277548.1277573",
+  bibdate =    "Fri Jun 20 08:46:50 MDT 2008",
+  bibsource =  "http://portal.acm.org/;
+                http://www.math.utah.edu/pub/tex/bib/issac.bib",
+  abstract =   "In this paper we discuss the use of structured matrix
+                methods for the numerical approximation of the zeros of
+                a univariate polynomial. In particular, it is shown
+                that root-finding algorithms based on floating-point
+                eigenvalue computation can benefit from the structure
+                of the matrix problem to reduce their complexity and
+                memory requirements by an order of magnitude.",
+  acknowledgement = "Nelson H. F. Beebe, University of Utah, Department
+                of Mathematics, 110 LCB, 155 S 1400 E RM 233, Salt Lake
+                City, UT 84112-0090, USA, Tel: +1 801 581 5254, FAX: +1
+                801 581 4148, e-mail: \path|beebe@math.utah.edu|,
+                \path|beebe@acm.org|, \path|beebe@computer.org|
+                (Internet), URL:
+                \path|http://www.math.utah.edu/~beebe/|",
+  keywords =   "complexity; eigenvalue computation; polynomial
+                root-finding; rank-structured matrices",
+  doi-url =    "http://dx.doi.org/10.1145/1277548.1277573",
+}
+
+@Article{Skachek008,
+  title =      "Probabilistic algorithm for finding roots of
+                linearized polynomials",
+  author =     "V. Skachek AND M. Roth",
+  journal =    "Des. Codes Cryptography",
+  year =       "2008",
+  number =     "1",
+  volume =     "46",
+  bibdate =    "2008-03-11",
+  bibsource =  "DBLP,
+                http://dblp.uni-trier.de/db/journals/dcc/dcc46.html#SkachekR08",
+  pages =      "17--23",
+  URL =        "http://dx.doi.org/10.1007/s10623-007-9125-y",
+}
+
+@Article{Zhancall08,
+  title =   " A constrained learning algorithm for finding multiple real roots of polynomial",
+  journal = " In: Proc of the 2008 intl symposium on computational intelligence and design",
+  volume =  "",
+  number =  "",
+  pages =   "38-41",
+  year =    "2008",
+  author =  "X. Zhanc AND M. Wan,Z.Yi",
+}x
+
+
+@InProceedings{Zhuall08,
+  title =      "An Adaptive Algorithm Finding Multiple Roots of Polynomials",
+  author =     "W. Zhu AND Z. Zeng AND Dm. Lin",
+  bibdate =    "2008-09-25",
+  bibsource =  "DBLP,
+                http://dblp.uni-trier.de/db/conf/isnn/isnn2008-2.html#ZhuZL08",
+  booktitle =  "ISNN (2)",
+  publisher =  "Springer",
+  year =       "2008",
+  volume =     "5264",
+  editor =     "Fuchun Sun and Jianwei Zhang 0001 and Ying Tan and
+                Jinde Cao and Wen Yu 0001",
+  ISBN =       "978-3-540-87733-2",
+  pages =      "674--681",
+  series =     "Lecture Notes in Computer Science",
+  URL =        "http://dx.doi.org/10.1007/978-3-540-87734-9_77",
+}
+
+@Article{Azad07,
+  title =   " The performance of synchronous parallel polynomial root extraction on a ring multicomputer",
+  journal = " Clust Comput ",
+  volume =  "2",
+  number =  "10",
+  pages =   "167-174",
+  year =    "2007",
+    author =  "HS. Azad",
+}x
+
+
+
+
+@Article{Bini04,
+  title =   " Inverse power and Durand Kerner iterations for univariate polynomial root finding",
+  journal = " Comput Math Appl ",
+  volume =  "47",
+  number =  "",
+  pages =   "447-459",
+  year =    "2004",
+  author =  "DA. Bini AND L. Gemignani",
+}x
+
+@Article{Jana99,
+  title =   " Finding polynomial zeroes on a Multi-mesh of trees (MMT)",
+  journal = " In: Proc of the 2nd int conference on information technology",
+  volume =  "",
+  number =  "",
+  pages =   "202-206",
+  year =    "1999",
+  author =  "PK. Jana",
+}x
+
+@Article{Weierstrass03,
+  title =   " Neuer Beweis des Satzes, dass jede ganze rationale function einer veranderlichen dagestellt werden kann als ein product aus linearen functionen derselben veranderlichen",
+  journal = " Ges. Werke",
+  volume =  "3",
+  number =  "",
+  pages =   "251-269",
+  year =    "1903",
+  author =  "K. Weierstrass",
+}x
+@Manual{NVIDIA10,
+title = {NVIDIA CUDA C Programming Guide},
+OPTkey = {•},
+OPTauthor = {NVIDIA Corporation},
+OPTorganization = {Design Guide},
+OPTaddress = {•},
+OPTedition = {•},
+OPTmonth = {march},
+OPTyear = {2015},
+OPTnote = {•},
+OPTannote = {•}
+}
+
+
+