-\KwIn{$Z^{0}$(Initial root's vector),$\varepsilon$ (error tolerance threshold),P(Polynomial to solve)}
-\KwOut {Z(The solution root's vector)}
+\caption{A sequential algorithm to find roots with the Ehrlich-Aberth method}
+
+\KwIn{$Z^{0}$(Initial root's vector),$\varepsilon$ (error tolerance threshold), P(Polynomial to solve),$\Delta z_{max}$ (maximum value of stop condition),k (number of iteration),n(Polynomial's degrees)}
+\KwOut {Z (The solution root's vector),ZPrec (the previous solution root's vector)}