]> AND Private Git Repository - kahina_paper1.git/blobdiff - paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
biblio
[kahina_paper1.git] / paper.tex
index d9c332420842844c03ce34d20615eaa0123df349..96e01fd054a410f2d09c9958b0154fcd26892f22 100644 (file)
--- a/paper.tex
+++ b/paper.tex
@@ -151,7 +151,7 @@ method:
  DK: z_i^{k+1}=z_{i}^{k}-\frac{P(z_i^{k})}{\prod_{i\neq j}(z_i^{k}-z_j^{k})},   i = 1, . . . , n,
 \end{equation}
 %%\end{center}
  DK: z_i^{k+1}=z_{i}^{k}-\frac{P(z_i^{k})}{\prod_{i\neq j}(z_i^{k}-z_j^{k})},   i = 1, . . . , n,
 \end{equation}
 %%\end{center}
-where $z_i^k$ is the $i^{th}$ root of the polynomial $P$ at the
+where $z_i^k$ is the $i^{th}$ root of the polynomial $p$ at the
 iteration $k$.
 
 
 iteration $k$.
 
 
@@ -169,10 +169,10 @@ Aberth~\cite{Aberth73} uses a different iteration formula given as:
  EA: z_i^{k+1}=z_i^{k}-\frac{1}{{\frac {P'(z_i^{k})} {P(z_i^{k})}}-{\sum_{i\neq j}\frac{1}{(z_i^{k}-z_j^{k})}}}, i = 1, . . . , n,
 \end{equation}
 %%\end{center}
  EA: z_i^{k+1}=z_i^{k}-\frac{1}{{\frac {P'(z_i^{k})} {P(z_i^{k})}}-{\sum_{i\neq j}\frac{1}{(z_i^{k}-z_j^{k})}}}, i = 1, . . . , n,
 \end{equation}
 %%\end{center}
-where $P'(z)$ is the polynomial derivative of $P$ evaluated in the
+where $p'(z)$ is the polynomial derivative of $p$ evaluated in the
 point $z$.
 
 point $z$.
 
-Aberth, Ehrlich and Farmer-Loizou~\cite{Loizon83} have proved that
+Aberth, Ehrlich and Farmer-Loizou~\cite{Loizou83} have proved that
 the Ehrlich-Aberth method (EA) has a cubic order of convergence for simple roots whereas the Durand-Kerner has a quadratic order of convergence.
 
 
 the Ehrlich-Aberth method (EA) has a cubic order of convergence for simple roots whereas the Durand-Kerner has a quadratic order of convergence.
 
 
@@ -186,18 +186,18 @@ time.
 Many authors have dealt with the parallelization of
 simultaneous methods, i.e. that find all the zeros simultaneously. 
 Freeman~\cite{Freeman89} implemented and compared DK, EA and another method of the fourth order proposed
 Many authors have dealt with the parallelization of
 simultaneous methods, i.e. that find all the zeros simultaneously. 
 Freeman~\cite{Freeman89} implemented and compared DK, EA and another method of the fourth order proposed
-by Farmer and Loizou~\cite{Loizon83}, on a 8-processor linear
+by Farmer and Loizou~\cite{Loizou83}, on a 8-processor linear
 chain, for polynomials of degree up to 8. The third method often
 diverges, but the first two methods have speed-up equal to 5.5. Later,
 Freeman and Bane~\cite{Freemanall90}  considered asynchronous
 algorithms, in which each processor continues to update its
 chain, for polynomials of degree up to 8. The third method often
 diverges, but the first two methods have speed-up equal to 5.5. Later,
 Freeman and Bane~\cite{Freemanall90}  considered asynchronous
 algorithms, in which each processor continues to update its
-approximations even though the latest values of other $z_i((k))$
+approximations even though the latest values of other $z_i^{k}$
 have not been received from the other processors, in contrast with synchronous algorithms where it would wait those values before making a new iteration.
 Couturier and al.~\cite{Raphaelall01} proposed two methods of parallelization for
 a shared memory architecture and for distributed memory one. They were able to
 have not been received from the other processors, in contrast with synchronous algorithms where it would wait those values before making a new iteration.
 Couturier and al.~\cite{Raphaelall01} proposed two methods of parallelization for
 a shared memory architecture and for distributed memory one. They were able to
-compute the roots of sparse polynomials of degree 10000 in 430 seconds with only 8
+compute the roots of sparse polynomials of degree 10,000 in 430 seconds with only 8
 personal computers and 2 communications per iteration. Comparing to the sequential implementation
 personal computers and 2 communications per iteration. Comparing to the sequential implementation
-where it takes up to 3300 seconds to obtain the same results, the authors show an interesting speedup.
+where it takes up to 3,300 seconds to obtain the same results, the authors show an interesting speedup.
 
 Very few works had been performed since this last work until the appearing of
 the Compute Unified Device Architecture (CUDA)~\cite{CUDA10}, a
 
 Very few works had been performed since this last work until the appearing of
 the Compute Unified Device Architecture (CUDA)~\cite{CUDA10}, a
@@ -211,28 +211,28 @@ Ghidouche and al~\cite{Kahinall14} proposed an implementation of the
 Durand-Kerner method on GPU. Their main
 result showed that a parallel CUDA implementation is about 10 times faster than
 the sequential implementation on a single CPU for  sparse
 Durand-Kerner method on GPU. Their main
 result showed that a parallel CUDA implementation is about 10 times faster than
 the sequential implementation on a single CPU for  sparse
-polynomials of degree 48000. 
+polynomials of degree 48,000. 
 
 
 In this paper, we focus on the implementation of the Ehrlich-Aberth
 method for high degree polynomials on GPU. We propose an adaptation of
 the exponential logarithm in order to be able to solve sparse and full
 polynomial of degree up to $1,000,000$. The paper is organized as
 
 
 In this paper, we focus on the implementation of the Ehrlich-Aberth
 method for high degree polynomials on GPU. We propose an adaptation of
 the exponential logarithm in order to be able to solve sparse and full
 polynomial of degree up to $1,000,000$. The paper is organized as
-follows. Initially, we recall the Ehrlich-Aberth method in Section
-\ref{sec1}. Improvements for the Ehrlich-Aberth method are proposed in
-Section \ref{sec2}. Related work to the implementation of simultaneous
-methods using a parallel approach is presented in Section
-\ref{secStateofArt}.  In Section \ref{sec5} we propose a parallel
+follows. Initially, we recall the Ehrlich-Aberth method in
+Section~\ref{sec1}. Improvements for the Ehrlich-Aberth method are
+proposed in Section \ref{sec2}. Related work to the implementation of
+simultaneous methods using a parallel approach is presented in Section
+\ref{secStateofArt}.  In Section~\ref{sec5} we propose a parallel
 implementation of the Ehrlich-Aberth method on GPU and discuss
 implementation of the Ehrlich-Aberth method on GPU and discuss
-it. Section \ref{sec6} presents and investigates our implementation
-and experimental study results. Finally, Section\ref{sec7} 6 concludes
+it. Section~\ref{sec6} presents and investigates our implementation
+and experimental study results. Finally, Section~\ref{sec7} concludes
 this paper and gives some hints for future research directions in this
 topic.
 
 this paper and gives some hints for future research directions in this
 topic.
 
-\section{The Sequential Aberth method}
+\section{Ehrlich-Aberth method}
 \label{sec1}
 A cubically convergent iteration method for finding zeros of
 \label{sec1}
 A cubically convergent iteration method for finding zeros of
-polynomials was proposed by O. Aberth~\cite{Aberth73}. In the fellowing we present the main stages of the running of the Aberth method.
+polynomials was proposed by O. Aberth~\cite{Aberth73}. The Ehrlich-Aberth method contain 4 main steps, presented in the following. 
 %The Aberth method is a purely algebraic derivation. 
 %To illustrate the derivation, we let $w_{i}(z)$ be the product of linear factors 
 
 %The Aberth method is a purely algebraic derivation. 
 %To illustrate the derivation, we let $w_{i}(z)$ be the product of linear factors 
 
@@ -258,7 +258,7 @@ polynomials was proposed by O. Aberth~\cite{Aberth73}. In the fellowing we prese
 
 
 \subsection{Polynomials Initialization}
 
 
 \subsection{Polynomials Initialization}
-The initialization of a polynomial p(z) is done by setting each of the $n$ complex coefficients $a_{i}$:
+The initialization of a polynomial $p(z)$ is done by setting each of the $n$ complex coefficients $a_{i}$:
 
 \begin{equation}
 \label{eq:SimplePolynome}
 
 \begin{equation}
 \label{eq:SimplePolynome}
@@ -266,12 +266,12 @@ The initialization of a polynomial p(z) is done by setting each of the $n$ compl
 \end{equation}
 
 
 \end{equation}
 
 
-\subsection{Vector $z^{(0)}$ Initialization}
-
-Like for any iterative method, we need to choose $n$ initial guess points $z^{(0)}_{i}, i = 1, . . . , n.$
+\subsection{Vector $Z^{(0)}$ Initialization}
+\label{sec:vec_initialization}
+As for any iterative method, we need to choose $n$ initial guess points $z^{0}_{i}, i = 1, . . . , n.$
 The initial guess is very important since the number of steps needed by the iterative method to reach
 a given approximation strongly depends on it.
 The initial guess is very important since the number of steps needed by the iterative method to reach
 a given approximation strongly depends on it.
-In~\cite{Aberth73} the Aberth iteration is started by selecting $n$
+In~\cite{Aberth73} the Ehrlich-Aberth iteration is started by selecting $n$
 equi-spaced points on a circle of center 0 and radius r, where r is
 an upper bound to the moduli of the zeros. Later, Bini and al.~\cite{Bini96}
 performed this choice by selecting complex numbers along different
 equi-spaced points on a circle of center 0 and radius r, where r is
 an upper bound to the moduli of the zeros. Later, Bini and al.~\cite{Bini96}
 performed this choice by selecting complex numbers along different
@@ -299,27 +299,30 @@ Here we give a second form of the iterative function used by Ehrlich-Aberth meth
 
 \begin{equation}
 \label{Eq:Hi}
 
 \begin{equation}
 \label{Eq:Hi}
-EA2: z^{k+1}=z_{i}^{k}-\frac{\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}}
-{1-\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}\sum_{j=1,j\neq i}^{j=n}{\frac{1}{(z_{i}^{k}-z_{j}^{k})}}}, i=0,. . . .,n
+EA2: z^{k+1}_{i}=z_{i}^{k}-\frac{\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}}
+{1-\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}\sum_{j=1,j\neq i}^{j=n}{\frac{1}{(z_{i}^{k}-z_{j}^{k})}}}, i=1,. . . .,n
 \end{equation}
 \end{equation}
-we notice that the function iterative in Eq.~\ref{Eq:Hi} it the same those presented in Eq.~\ref{Eq:EA}, but we prefer used the last one seen the advantage of its use to improve the Ehrlich-Aberth method and resolve very high degrees polynomials. More detail in the section ~\ref{sec2}.    
+It can be noticed that this equation is equivalent to Eq.~\ref{Eq:EA},
+but we prefer the latter one because we can use it to improve the
+Ehrlich-Aberth method and find the roots of very high degrees polynomials. More
+details are given in Section~\ref{sec2}.
 \subsection{Convergence Condition}
 \subsection{Convergence Condition}
-The convergence condition determines the termination of the algorithm. It consists in stopping from running the iterative function  when the roots are sufficiently stable. We consider that the method converges sufficiently when:
+The convergence condition determines the termination of the algorithm. It consists in stopping the iterative function  when the roots are sufficiently stable. We consider that the method converges sufficiently when:
 
 \begin{equation}
 \label{eq:Aberth-Conv-Cond}
 
 \begin{equation}
 \label{eq:Aberth-Conv-Cond}
-\forall i \in
-[1,n];\frac{z_{i}^{k}-z_{i}^{k-1}}{z_{i}^{k}}<\xi
+\forall i \in [1,n];\vert\frac{z_{i}^{k}-z_{i}^{k-1}}{z_{i}^{k}}\vert<\xi
 \end{equation}
 
 
 \end{equation}
 
 
-\section{Improving the Ehrlich-Aberth Method for high degree polynomials with exp.log formulation}
+\section{Improving the Ehrlich-Aberth Method for high degree polynomials with exp-log formulation}
 \label{sec2}
 \label{sec2}
-The Ehrlich-Aberth method implementation suffers of overflow problems. This
+With high degree polynomial, the Ehrlich-Aberth method implementation,
+as well as the Durand-Kerner implement, suffers from overflow problems. This
 situation occurs, for instance, in the case where a polynomial
 having positive coefficients and a large degree is computed at a
 situation occurs, for instance, in the case where a polynomial
 having positive coefficients and a large degree is computed at a
-point $\xi$ where $|\xi| > 1$, where $|x|$ stands for the modolus of a complex $x$. Indeed, the limited number in the
-mantissa of floating points representations makes the computation of p(z) wrong when z
+point $\xi$ where $|\xi| > 1$, where $|z|$ stands for the modolus of a complex $z$. Indeed, the limited number in the
+mantissa of floating points representations makes the computation of $p(z)$ wrong when z
 is large. For example $(10^{50}) +1+ (- 10^{50})$ will give the wrong result
 of $0$ instead of $1$. Consequently, we can not compute the roots
 for large degrees. This problem was early discussed in
 is large. For example $(10^{50}) +1+ (- 10^{50})$ will give the wrong result
 of $0$ instead of $1$. Consequently, we can not compute the roots
 for large degrees. This problem was early discussed in
@@ -335,7 +338,7 @@ propose to use the logarithm and the exponential of a complex in order to comput
 \begin{align}
 \label{defexpcomplex}
  \forall(x,y)\in R^{*2}; \exp(x+i.y) & = \exp(x).\exp(i.y)\\
 \begin{align}
 \label{defexpcomplex}
  \forall(x,y)\in R^{*2}; \exp(x+i.y) & = \exp(x).\exp(i.y)\\
-                                     & =\exp(x).\cos(y)+i.\exp(x).\sin(y)\label{defexpcomplex}
+                                     & =\exp(x).\cos(y)+i.\exp(x).\sin(y)\label{defexpcomplex1}
 \end{align}
 %%\end{equation}
 
 \end{align}
 %%\end{equation}
 
@@ -343,11 +346,11 @@ Using the logarithm (eq.~\ref{deflncomplex}) and the exponential (eq.~\ref{defex
 manipulate lower absolute values and the roots for large polynomial's degrees can be looked for successfully~\cite{Karimall98}.
 
 Applying this solution for the Ehrlich-Aberth method we obtain the
 manipulate lower absolute values and the roots for large polynomial's degrees can be looked for successfully~\cite{Karimall98}.
 
 Applying this solution for the Ehrlich-Aberth method we obtain the
-iteration function with logarithm:
+iteration function with exponential and logarithm:
 %%$$ \exp \bigl(  \ln(p(z)_{k})-ln(\ln(p(z)_{k}^{'}))- \ln(1- \exp(\ln(p(z)_{k})-ln(\ln(p(z)_{k}^{'})+\ln\sum_{i\neq j}^{n}\frac{1}{z_{k}-z_{j}})$$
 \begin{equation}
 \label{Log_H2}
 %%$$ \exp \bigl(  \ln(p(z)_{k})-ln(\ln(p(z)_{k}^{'}))- \ln(1- \exp(\ln(p(z)_{k})-ln(\ln(p(z)_{k}^{'})+\ln\sum_{i\neq j}^{n}\frac{1}{z_{k}-z_{j}})$$
 \begin{equation}
 \label{Log_H2}
-EA.EL: z^{k+1}=z_{i}^{k}-\exp \left(\ln \left(
+EA.EL: z^{k+1}_{i}=z_{i}^{k}-\exp \left(\ln \left(
 p(z_{i}^{k})\right)-\ln\left(p'(z^{k}_{i})\right)- \ln
 \left(1-Q(z^{k}_{i})\right)\right),
 \end{equation}
 p(z_{i}^{k})\right)-\ln\left(p'(z^{k}_{i})\right)- \ln
 \left(1-Q(z^{k}_{i})\right)\right),
 \end{equation}
@@ -357,13 +360,15 @@ where:
 \begin{equation}
 \label{Log_H1}
 Q(z^{k}_{i})=\exp\left( \ln (p(z^{k}_{i}))-\ln(p'(z^{k}_{i}))+\ln \left(
 \begin{equation}
 \label{Log_H1}
 Q(z^{k}_{i})=\exp\left( \ln (p(z^{k}_{i}))-\ln(p'(z^{k}_{i}))+\ln \left(
-\sum_{k\neq j}^{n}\frac{1}{z^{k}_{i}-z^{k}_{j}}\right)\right).
+\sum_{i\neq j}^{n}\frac{1}{z^{k}_{i}-z^{k}_{j}}\right)\right)i=1,...,n,
 \end{equation}
 
 \end{equation}
 
-This solution is applied when the root except the circle unit, represented by the radius $R$ evaluated in C language as:
-\begin{verbatim}
+This solution is applied when the root except the circle unit, represented by the radius $R$ evaluated in C language as :
+\begin{equation}
+\label{R.EL}
 R = exp(log(DBL_MAX)/(2*n) );
 R = exp(log(DBL_MAX)/(2*n) );
-\end{verbatim} 
+\end{equation}
+
 
 %\begin{equation}
 
 
 %\begin{equation}
 
@@ -381,15 +386,15 @@ Authors usually adopt one of the two following approaches to parallelize root
 finding algorithms. The first approach aims at reducing the total number of
 iterations as by Miranker
 ~\cite{Mirankar68,Mirankar71}, Schedler~\cite{Schedler72} and
 finding algorithms. The first approach aims at reducing the total number of
 iterations as by Miranker
 ~\cite{Mirankar68,Mirankar71}, Schedler~\cite{Schedler72} and
-Winogard~\cite{Winogard72}. The second approach aims at reducing the
+Winograd~\cite{Winogard72}. The second approach aims at reducing the
 computation time per iteration, as reported
 in~\cite{Benall68,Jana06,Janall99,Riceall06}. 
 
 There are many schemes for the simultaneous approximation of all roots of a given
 polynomial. Several works on different methods and issues of root
 computation time per iteration, as reported
 in~\cite{Benall68,Jana06,Janall99,Riceall06}. 
 
 There are many schemes for the simultaneous approximation of all roots of a given
 polynomial. Several works on different methods and issues of root
-finding have been reported in~\cite{Azad07, Gemignani07, Kalantari08, Skachek08, Zhancall08, Zhuall08}. However, Durand-Kerner and Ehrlich-Aberth methods are the most practical choices among
+finding have been reported in~\cite{Azad07, Gemignani07, Kalantari08, Zhancall08, Zhuall08}. However, Durand-Kerner and Ehrlich-Aberth methods are the most practical choices among
 them~\cite{Bini04}. These two methods have been extensively
 them~\cite{Bini04}. These two methods have been extensively
-studied for parallelization due to their intrinsics, i.e. the
+studied for parallelization due to their intrinsics parallelism, i.e. the
 computations involved in both methods has some inherent
 parallelism that can be suitably exploited by SIMD machines.
 Moreover, they have fast rate of convergence (quadratic for the
 computations involved in both methods has some inherent
 parallelism that can be suitably exploited by SIMD machines.
 Moreover, they have fast rate of convergence (quadratic for the
@@ -405,208 +410,278 @@ cause a high degree of memory conflict. Recently the author
 in~\cite{Mirankar71} proposed two versions of parallel algorithm
 for the Durand-Kerner method, and Ehrlich-Aberth method on a model of
 Optoelectronic Transpose Interconnection System (OTIS).The
 in~\cite{Mirankar71} proposed two versions of parallel algorithm
 for the Durand-Kerner method, and Ehrlich-Aberth method on a model of
 Optoelectronic Transpose Interconnection System (OTIS).The
-algorithms are mapped on an OTIS-2D torus using N processors. This
-solution needs N processors to compute N roots, which is not
+algorithms are mapped on an OTIS-2D torus using $N$ processors. This
+solution needs $N$ processors to compute $N$ roots, which is not
 practical for solving polynomials with large degrees.
 practical for solving polynomials with large degrees.
-Until very recently, the literature doen not mention implementations able to compute the roots of
-large degree polynomials (higher then 1000) and within small or at least tractable times. Finding polynomial roots rapidly and accurately is the main objective of our work. 
+%Until very recently, the literature did not mention implementations
+%able to compute the roots of large degree polynomials (higher then
+%1000) and within small or at least tractable times.
+
+Finding polynomial roots rapidly and accurately is the main objective of our work. 
 With the advent of CUDA (Compute Unified Device
 Architecture), finding the roots of polynomials receives a new attention because of the new possibilities to solve higher degree polynomials in less time. 
 In~\cite{Kahinall14} we already proposed the first implementation
 of a root finding method on GPUs, that of the Durand-Kerner method. The main result showed
 that a parallel CUDA implementation is 10 times as fast as the
 sequential implementation on a single CPU for high degree
 With the advent of CUDA (Compute Unified Device
 Architecture), finding the roots of polynomials receives a new attention because of the new possibilities to solve higher degree polynomials in less time. 
 In~\cite{Kahinall14} we already proposed the first implementation
 of a root finding method on GPUs, that of the Durand-Kerner method. The main result showed
 that a parallel CUDA implementation is 10 times as fast as the
 sequential implementation on a single CPU for high degree
-polynomials of 48000. In this paper we present a parallel implementation of Ehlisch-Aberth method on
-GPUs, which details are discussed in the sequel.
-
-
-\section {A CUDA parallel Ehrlich-Aberth method}
-In the following, we describe the parallel implementation of Ehrlich-Aberth method on GPU 
-for solving high degree polynomials. First, the hardware and software of the GPUs are presented. Then, a CUDA parallel Ehrlich-Aberth method are presented.
-
-\subsection{Background on the GPU architecture}
-A GPU is viewed as an accelerator for the data-parallel and
-intensive arithmetic computations. It draws its computing power
-from the parallel nature of its hardware and software
-architectures. A GPU is composed of hundreds of Streaming
-Processors (SPs) organized in several blocks called Streaming
-Multiprocessors (SMs). It also has a memory hierarchy. It has a
-private read-write local memory per SP, fast shared memory and
-read-only constant and texture caches per SM and a read-write
-global memory shared by all its SPs~\cite{NVIDIA10}.
-
-On a CPU equipped with a GPU, all the data-parallel and intensive
-functions of an application running on the CPU are off-loaded onto
-the GPU in order to accelerate their computations. A similar
-data-parallel function is executed on a GPU as a kernel by
-thousands or even millions of parallel threads, grouped together
-as a grid of thread blocks. Therefore, each SM of the GPU executes
-one or more thread blocks in SIMD fashion (Single  Instruction,
-Multiple Data) and in turn each SP of a GPU SM runs one or more
-threads within a block in SIMT fashion (Single Instruction,
-Multiple threads). Indeed at any given clock cycle, the threads
-execute the same instruction of a kernel, but each of them
-operates on different data.
- GPUs only work on data filled in their
-global memories and the final results of their kernel executions
-must be communicated to their CPUs. Hence, the data must be
-transferred in and out of the GPU. However, the speed of memory
-copy between the GPU and the CPU is slower than the memory
-bandwidths of the GPU memories and, thus, it dramatically affects
-the performances of GPU computations. Accordingly, it is necessary
-to limit as much as possible, data transfers between the GPU and its CPU during the
-computations.
-\subsection{Background on the CUDA Programming Model}
-
-The CUDA programming model is similar in style to a single program
-multiple-data (SPMD) software model. The GPU is viewed as a
-coprocessor that executes data-parallel kernel functions. CUDA
-provides three key abstractions, a hierarchy of thread groups,
-shared memories, and barrier synchronization. Threads have a three
-level hierarchy. A grid is a set of thread blocks that execute a
-kernel function. Each grid consists of blocks of threads. Each
-block is composed of hundreds of threads. Threads within one block
-can share data using shared memory and can be synchronized at a
-barrier. All threads within a block are executed concurrently on a
-multithreaded architecture.The programmer specifies the number of
-threads per block, and the number of blocks per grid. A thread in
-the CUDA programming language is much lighter weight than a thread
-in traditional operating systems. A thread in CUDA typically
-processes one data element at a time. The CUDA programming model
-has two shared read-write memory spaces, the shared memory space
-and the global memory space. The shared memory is local to a block
-and the global memory space is accessible by all blocks. CUDA also
-provides two read-only memory spaces, the constant space and the
-texture space, which reside in external DRAM, and are accessed via
-read-only caches.
-
-\section{ The implementation of Aberth method on GPU}
+polynomials of 48,000.
+%In this paper we present a parallel implementation of Ehrlich-Aberth
+%method on GPUs for sparse and full polynomials with high degree (up
+%to $1,000,000$).
+
+
+%% \section {A CUDA parallel Ehrlich-Aberth method}
+%% In the following, we describe the parallel implementation of Ehrlich-Aberth method on GPU 
+%% for solving high degree polynomials (up to $1,000,000$). First, the hardware and software of the GPUs are presented. Then, the CUDA parallel Ehrlich-Aberth method is presented.
+
+%% \subsection{Background on the GPU architecture}
+%% A GPU is viewed as an accelerator for the data-parallel and
+%% intensive arithmetic computations. It draws its computing power
+%% from the parallel nature of its hardware and software
+%% architectures. A GPU is composed of hundreds of Streaming
+%% Processors (SPs) organized in several blocks called Streaming
+%% Multiprocessors (SMs). It also has a memory hierarchy. It has a
+%% private read-write local memory per SP, fast shared memory and
+%% read-only constant and texture caches per SM and a read-write
+%% global memory shared by all its SPs~\cite{NVIDIA10}.
+
+%% On a CPU equipped with a GPU, all the data-parallel and intensive
+%% functions of an application running on the CPU are off-loaded onto
+%% the GPU in order to accelerate their computations. A similar
+%% data-parallel function is executed on a GPU as a kernel by
+%% thousands or even millions of parallel threads, grouped together
+%% as a grid of thread blocks. Therefore, each SM of the GPU executes
+%% one or more thread blocks in SIMD fashion (Single  Instruction,
+%% Multiple Data) and in turn each SP of a GPU SM runs one or more
+%% threads within a block in SIMT fashion (Single Instruction,
+%% Multiple threads). Indeed at any given clock cycle, the threads
+%% execute the same instruction of a kernel, but each of them
+%% operates on different data.
+%%  GPUs only work on data filled in their
+%% global memories and the final results of their kernel executions
+%% must be communicated to their CPUs. Hence, the data must be
+%% transferred in and out of the GPU. However, the speed of memory
+%% copy between the GPU and the CPU is slower than the memory
+%% bandwidths of the GPU memories and, thus, it dramatically affects
+%% the performances of GPU computations. Accordingly, it is necessary
+%% to limit as much as possible, data transfers between the GPU and its CPU during the
+%% computations.
+%% \subsection{Background on the CUDA Programming Model}
+
+%% The CUDA programming model is similar in style to a single program
+%% multiple-data (SPMD) software model. The GPU is viewed as a
+%% coprocessor that executes data-parallel kernel functions. CUDA
+%% provides three key abstractions, a hierarchy of thread groups,
+%% shared memories, and barrier synchronization. Threads have a three
+%% level hierarchy. A grid is a set of thread blocks that execute a
+%% kernel function. Each grid consists of blocks of threads. Each
+%% block is composed of hundreds of threads. Threads within one block
+%% can share data using shared memory and can be synchronized at a
+%% barrier. All threads within a block are executed concurrently on a
+%% multithreaded architecture.The programmer specifies the number of
+%% threads per block, and the number of blocks per grid. A thread in
+%% the CUDA programming language is much lighter weight than a thread
+%% in traditional operating systems. A thread in CUDA typically
+%% processes one data element at a time. The CUDA programming model
+%% has two shared read-write memory spaces, the shared memory space
+%% and the global memory space. The shared memory is local to a block
+%% and the global memory space is accessible by all blocks. CUDA also
+%% provides two read-only memory spaces, the constant space and the
+%% texture space, which reside in external DRAM, and are accessed via
+%% read-only caches.
+
+\section{ Implementation of Ehrlich-Aberth method on GPU}
 \label{sec5}
 %%\subsection{A CUDA implementation of the Aberth's method }
 %%\subsection{A GPU implementation of the Aberth's method }
 
 
 
 \label{sec5}
 %%\subsection{A CUDA implementation of the Aberth's method }
 %%\subsection{A GPU implementation of the Aberth's method }
 
 
 
-\subsection{A sequential Aberth algorithm}
-The main steps of Aberth method are shown in Algorithm.~\ref{alg1-seq} :
-  
-\begin{algorithm}[H]
-\label{alg1-seq}
-%\LinesNumbered
-\caption{A sequential algorithm to find roots with the Aberth method}
+%% \subsection{Sequential Ehrlich-Aberth algorithm}
+%% The main steps of Ehrlich-Aberth method are shown in Algorithm.~\ref{alg1-seq} :
+%% %\LinesNumbered  
+%% \begin{algorithm}[H]
+%% \label{alg1-seq}
 
 
-\KwIn{$Z^{0}$(Initial root's vector),$\varepsilon$ (error tolerance threshold),P(Polynomial to solve)}
-\KwOut {Z(The solution root's vector)}
+%% \caption{A sequential algorithm to find roots with the Ehrlich-Aberth method}
 
 
-\BlankLine
+%% \KwIn{$Z^{0}$ (Initial root's vector), $\varepsilon$ (error tolerance
+%%   threshold), $P$ (Polynomial to solve),$Pu$ (the derivative of P) $\Delta z_{max}$ (maximum value
+%%   of stop condition), k (number of iteration), n (Polynomial's degrees)}
+%% \KwOut {$Z$ (The solution root's vector), $ZPrec$ (the previous solution root's vector)}
 
 
-Initialization of the coefficients of the polynomial to solve\;
-Initialization of the solution vector $Z^{0}$\;
+%% \BlankLine
 
 
-\While {$\Delta z_{max}\succ \epsilon$}{
- Let $\Delta z_{max}=0$\;
-\For{$j \gets 0 $ \KwTo $n$}{
-$ZPrec\left[j\right]=Z\left[j\right]$\;
-$Z\left[j\right]=H\left(j,Z\right)$\;
-}
+%% Initialization of $P$\;
+%% Initialization of $Pu$\;
+%% Initialization of the solution vector $Z^{0}$\;
+%% $\Delta z_{max}=0$\;
+%%  k=0\;
 
 
-\For{$i \gets 0 $ \KwTo $n-1$}{
-$c=\frac{\left|Z\left[i\right]-ZPrec\left[i\right]\right|}{Z\left[i\right]}$\;
-\If{$c > \Delta z_{max}$ }{
-$\Delta z_{max}$=c\;}
-}
-}
-\end{algorithm}
+%% \While {$\Delta z_{max} > \varepsilon$}{
+%%  Let $\Delta z_{max}=0$\;
+%% \For{$j \gets 0 $ \KwTo $n$}{
+%% $ZPrec\left[j\right]=Z\left[j\right]$;// save Z at the iteration k.\
 
 
-~\\ 
-In this sequential algorithm, one CPU thread  executes all the steps. Let us look to the $3^{rd}$ step i.e. the execution of the iterative function, 2 sub-steps are needed. The first sub-step \textit{save}s the solution vector of the previous iteration, the second sub-step \textit{update}s or computes the new values of the roots vector.
-There exists two ways to execute the iterative function that we call a Jacobi one and a Gauss-Seidel one. With the Jacobi iteration, at iteration $k+1$ we need all the previous values $z^{(k)}_{i}$ to compute the new values $z^{(k+1)}_{i}$, that is :
+%% $Z\left[j\right]=H\left(j, Z, P, Pu\right)$;//update Z with the iterative function.\
+%% }
+%% k=k+1\;
+
+%% \For{$i \gets 0 $ \KwTo $n-1$}{
+%% $c= testConverge(\Delta z_{max},ZPrec\left[j\right],Z\left[j\right])$\;
+%% \If{$c > \Delta z_{max}$ }{
+%% $\Delta z_{max}$=c\;}
+%% }
+
+%% }
+%% \end{algorithm}
+
+%% ~\\ 
+%% In this sequential algorithm, one CPU thread  executes all the steps. Let us look to the $3^{rd}$ step i.e. the execution of the iterative function, 2 sub-steps are needed. The first sub-step \textit{save}s the solution vector of the previous iteration, the second sub-step \textit{update}s or computes the new values of the roots vector.
+
+\subsection{Parallel implementation with CUDA }
+
+In order to implement the Ehrlich-Aberth method in CUDA, it is
+possible to use the Jacobi scheme or the Gauss Seidel one.  With the
+Jacobi iteration, at iteration $k+1$ we need all the previous values
+$z^{k}_{i}$ to compute the new values $z^{k+1}_{i}$, that is :
 
 \begin{equation}
 
 \begin{equation}
-EAJ: z^{k+1}_{i}=\frac{p(z^{k}_{i})}{p'(z^{k}_{i})-p(z^{k}_{i})\sum^{n}_{j=1 j\neq i}\frac{1}{z^{k}_{i}-z^{k}_{j}}}, i=1,...,n.
+EAJ: z^{k+1}_{i}=z_{i}^{k}-\frac{\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}}
+{1-\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}\sum_{j=1,j\neq i}^{j=n}{\frac{1}{(z_{i}^{k}-z_{j}^{k})}}}, i=1,. . . .,n.
 \end{equation}
 
 With the Gauss-Seidel iteration, we have:
 \end{equation}
 
 With the Gauss-Seidel iteration, we have:
+%\begin{equation}
+%\label{eq:Aberth-H-GS}
+%EAGS: z^{k+1}_{i}=\frac{p(z^{k}_{i})}{p'(z^{k}_{i})-p(z^{k}_{i})(\sum^{i-1}_{j=1}\frac{1}{z^{k}_{i}-z^{k+1}_{j}}+\sum^{n}_{j=i+1}\frac{1}{z^{k}_{i}-z^{k}_{j}})}, i=1,...,n.
+%\end{equation}
+
 \begin{equation}
 \label{eq:Aberth-H-GS}
 \begin{equation}
 \label{eq:Aberth-H-GS}
-EAGS: z^{k+1}_{i}=\frac{p(z^{k}_{i})}{p'(z^{k}_{i})-p(z^{k}_{i})(\sum^{i-1}_{j=1}\frac{1}{z^{k}_{i}-z^{k+1}_{j}}+\sum^{n}_{j=i+1}\frac{1}{z^{k}_{i}-z^{k}_{j}})}, i=1,...,n.
+EAGS: z^{k+1}_{i}=z_{i}^{k}-\frac{\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}}
+{1-\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}(\sum^{i-1}_{j=1}\frac{1}{z^{k}_{i}-z^{k+1}_{j}}+\sum_{j=1,j\neq i}^{j=n}{\frac{1}{(z_{i}^{k}-z_{j}^{k})}})}, i=1,. . . .,n
 \end{equation}
 \end{equation}
-%%Here a finiched my revision %%
-Using Equation.~\ref{eq:Aberth-H-GS} to update the vector solution \textit{Z}, we expect the Gauss-Seidel iteration to converge more quickly because, just as its ancestor (for solving linear systems of equations), it uses the most fresh computed roots $z^{k+1}_{i}$.
 
 
-The $4^{th}$ step of the algorithm checks the convergence condition using Equation.~\ref{eq:Aberth-Conv-Cond}.
-Both steps 3 and 4 use 1 thread to compute all the $n$ roots on CPU, which is very harmful for performance in case of the large degree polynomials.
+Using Eq.~\ref{eq:Aberth-H-GS} to update the vector solution
+\textit{Z}, we expect the Gauss-Seidel iteration to converge more
+quickly because, just as any Jacobi algorithm (for solving linear systems of equations), it uses the most fresh computed roots $z^{k+1}_{i}$.
 
 
+%The $4^{th}$ step of the algorithm checks the convergence condition using Eq.~\ref{eq:Aberth-Conv-Cond}.
+%Both steps 3 and 4 use 1 thread to compute all the $n$ roots on CPU, which is very harmful for performance in case of the large degree polynomials.
 
 
-\subsection{A Parallel implementation with CUDA }
-On the CPU,  both steps 3 and 4 contain the loop \verb=for= and a single thread executes all the instructions in the loop $n$ times. In this subsection, we explain how the GPU architecture can compute this loop and reduce the execution time.
-In the GPU, the schduler assigns the execution of this loop to a group of threads organised as a grid of blocks with block containing a number of threads. All threads within a block are executed concurrently in parallel. The instructions run on the GPU are grouped in special function called kernels. It's up to the programmer, to describe the execution context, that is the size of the Grid, the number of blocks and the number of threads per block upon the call of a given kernel, according to a special syntax defined by CUDA.
 
 
-In CUDA programming, all the instructions of the  \verb=for= loop are executed by the GPU as a kernel. A kernel is a function written in CUDA and defined by the  \verb=__global__= qualifier added before a usual \verb=C= function, which instructs the compiler to generate appropriate code to pass it to the CUDA runtime in order to be executed on the GPU. 
 
 
-Algorithm~\ref{alg2-cuda} shows a sketch of the Aberth algorithm usind CUDA.
+%On the CPU,  both steps 3 and 4 contain the loop \verb=for= and a single thread executes all the instructions in the loop $n$ times. In this subsection, we explain how the GPU architecture can compute this loop and reduce the execution time.
+%In the GPU, the scheduler assigns the execution of this loop to a
+%group of threads organised as a grid of blocks with block containing a
+%number of threads. All threads within a block are executed
+%concurrently in parallel. The instructions run on the GPU are grouped
+%in special function called kernels. With CUDA, a programmer must
+%describe the kernel execution context:  the size of the Grid, the number of blocks and the number of threads per block.
 
 
+%In CUDA programming, all the instructions of the  \verb=for= loop are executed by the GPU as a kernel. A kernel is a function written in CUDA and defined by the  \verb=__global__= qualifier added before a usual \verb=C= function, which instructs the compiler to generate appropriate code to pass it to the CUDA runtime in order to be executed on the GPU. 
+
+Algorithm~\ref{alg2-cuda} shows sketch of the Ehrlich-Aberth algorithm using CUDA.
+
+\begin{enumerate}
 \begin{algorithm}[H]
 \label{alg2-cuda}
 %\LinesNumbered
 \begin{algorithm}[H]
 \label{alg2-cuda}
 %\LinesNumbered
-\caption{CUDA Algorithm to find roots with the Aberth method}
+\caption{CUDA Algorithm to find roots with the Ehrlich-Aberth method}
 
 
-\KwIn{$Z^{0}$(Initial root's vector),$\varepsilon$ (error
-tolerance threshold),P(Polynomial to solve)}
+\KwIn{$Z^{0}$ (Initial root's vector), $\varepsilon$ (error tolerance
+  threshold), P (Polynomial to solve), Pu (Derivative of P), $n$ (Polynomial's degrees), $\Delta z_{max}$ (Maximum value of stop condition)}
 
 
-\KwOut {Z(The solution root's vector)}
+\KwOut {$Z$ (Solution root's vector), $ZPrec$ (Previous solution root's vector)}
 
 \BlankLine
 
 
 \BlankLine
 
-Initialization of the coeffcients of the polynomial to solve\;
-Initialization of the solution vector $Z^{0}$\;
-Allocate and copy initial data to the GPU global memory\;
+\item Initialization of the of P\;
+\item Initialization of the of Pu\;
+\item Initialization of the solution vector $Z^{0}$\;
+\item Allocate and copy initial data to the GPU global memory\;
+\item k=0\;
+\While {$\Delta z_{max} > \epsilon$}{
+\item Let $\Delta z_{max}=0$\;
+\item $ kernel\_save(ZPrec,Z)$\;
+\item  k=k+1\;
+\item $ kernel\_update(Z,P,Pu)$\;
+\item $kernel\_testConverge(\Delta z_{max},Z,ZPrec)$\;
 
 
-\While {$\Delta z_{max}\succ \epsilon$}{
- Let $\Delta z_{max}=0$\;
-$ kernel\_save(d\_z^{k-1})$\;
-$ kernel\_update(d\_z^{k})$\;
-$kernel\_testConverge(\Delta z_{max},d_z^{k},d_z^{k-1})$\;
 }
 }
+\item Copy results from GPU memory to CPU memory\;
 \end{algorithm}
 \end{algorithm}
+\end{enumerate}
 ~\\ 
 
 ~\\ 
 
-After the initialisation step, all data of the root finding problem to be solved must be copied from the CPU memory to the GPU global memory, because the GPUs only access data already present in their memories. Next, all the data-parallel arithmetic operations inside the main loop \verb=(do ... while(...))= are executed as kernels by the GPU. The first kernel named \textit{save} in line 6 of Algorithm~\ref{alg2-cuda} consists in saving the vector of polynomial's root found at the previous time-step in GPU memory, in order to check the convergence of the roots after each iteration (line 8, Algorithm~\ref{alg2-cuda}).
-
-The second kernel executes the iterative function $H$ and updates $z^{k}$, according to Algorithm~\ref{alg3-update}. We notice that the update kernel is called in two forms, separated with the value of \emph{R} which determines the radius beyond which we apply the logarithm computation of the power of a complex. 
+After the initialization step, all data of the root finding problem
+must be copied from the CPU memory to the GPU global memory. Next, all
+the data-parallel arithmetic operations inside the main loop
+\verb=(while(...))= are executed as kernels by the GPU. The
+first kernel named \textit{save} in line 7 of
+Algorithm~\ref{alg2-cuda} consists in saving the vector of
+polynomial's root found at the previous time-step in GPU memory, in
+order to check the convergence of the roots after each iteration (line
+10, Algorithm~\ref{alg2-cuda}).
+
+The second kernel executes the iterative function and updates
+$Z$, according to Algorithm~\ref{alg3-update}. We notice that the
+update kernel is called in two forms, according to the value
+\emph{R} which determines the radius beyond which we apply the
+exponential logarithm algorithm. 
 
 \begin{algorithm}[H]
 \label{alg3-update}
 %\LinesNumbered
 \caption{Kernel update}
 
 
 \begin{algorithm}[H]
 \label{alg3-update}
 %\LinesNumbered
 \caption{Kernel update}
 
-\eIf{$(\left|Z^{(k)}\right|<= R)$}{
-$kernel\_update(d\_z^{k})$\;}
+\eIf{$(\left|Z\right|<= R)$}{
+$kernel\_update(Z,P,Pu)$\;}
 {
 {
-$kernel\_update\_Log(d\_z^{k})$\;
+$kernel\_update\_ExpoLog(Z,P,Pu)$\;
 }
 \end{algorithm}
 
 }
 \end{algorithm}
 
-The first form executes formula \ref{eq:SimplePolynome} if the modulus of the current complex is less than the a certain value called the radius i.e. ($ |z^{k}_{i}|<= R$), else the kernel executes formulas (Eq.~\ref{deflncomplex},Eq.~\ref{defexpcomplex}). The radius $R$ is evaluated as :
+The first form executes formula the EA function Eq.~\ref{Eq:Hi} if the modulus
+of the current complex is less than the a certain value called the
+radius i.e. ($ |z^{k}_{i}|<= R$), else the kernel executes the EA.EL
+function Eq.~\ref{Log_H2}
+(with Eq.~\ref{deflncomplex}, Eq.~\ref{defexpcomplex}). The radius $R$ is evaluated as in Eq.~\ref{R.EL}.
+
+The last kernel checks the convergence of the roots after each update
+of $Z^{k}$, according to formula Eq.~\ref{eq:Aberth-Conv-Cond}. We used the functions of the CUBLAS Library (CUDA Basic Linear Algebra Subroutines) to implement this kernel. 
+
+The kernel terminates its computations when all the roots have
+converged. It should be noticed that, as blocks of threads are
+scheduled automatically by the GPU, we have absolutely no control on
+the order of the blocks. Consequently, our algorithm is executed more
+or less in an asynchronous iteration model, where blocks of roots are
+updated in a non deterministic way. As the Durand-Kerner method has
+been proved to converge with asynchronous iterations, we think it is
+similar with the Ehrlich-Aberth method, but we did not try to prove
+this in that paper. Another consequence of that, is that several
+executions of our algorithm with the same polynomial do no give
+necessarily the same result (but roots have the same accuracy) and the
+same number of iterations (even if the variation is not very
+significant).
+
+
 
 
-$$R = \exp( \log(DBL\_MAX) / (2*n) )$$ where $DBL\_MAX$ stands for the maximum representable double value.
 
 
-The last kernel verifies the convergence of the roots after each update of $Z^{(k)}$, according to formula. We used the functions of the CUBLAS Library (CUDA Basic Linear Algebra Subroutines) to implement this kernel. 
 
 
-The kernels terminate it computations when all the roots converge. Finally, the solution of the root finding problem is copied back from GPU global memory to CPU memory. We use the communication functions of CUDA for the memory allocation in the GPU \verb=(cudaMalloc())= and for data transfers from the CPU memory to the GPU memory \verb=(cudaMemcpyHostToDevice)=
-or from GPU memory to CPU memory \verb=(cudaMemcpyDeviceToHost))=. 
 %%HIER END MY REVISIONS (SIDER)
 \section{Experimental study}
 \label{sec6}
 %\subsection{Definition of the used polynomials }
 %%HIER END MY REVISIONS (SIDER)
 \section{Experimental study}
 \label{sec6}
 %\subsection{Definition of the used polynomials }
-We study two categories of polynomials : the sparse polynomials and the full polynomials.
-\paragraph{A sparse polynomial}:is a polynomial for which only some coefficients are not null. We use in the following polynomial for which the roots are distributed on 2 distinct circles :
+We study two categories of polynomials: sparse polynomials and the full polynomials.\\
+{\it A sparse polynomial} is a polynomial for which only some
+coefficients are not null. In this paper, we consider sparse polynomials for which the roots are distributed on 2 distinct circles:
 \begin{equation}
        \forall \alpha_{1} \alpha_{2} \in C,\forall n_{1},n_{2} \in N^{*}; P(z)= (z^{n_{1}}-\alpha_{1})(z^{n_{2}}-\alpha_{2})
 \begin{equation}
        \forall \alpha_{1} \alpha_{2} \in C,\forall n_{1},n_{2} \in N^{*}; P(z)= (z^{n_{1}}-\alpha_{1})(z^{n_{2}}-\alpha_{2})
-\end{equation}
-
-
-\paragraph{A full polynomial}:is in contrast, a polynomial for which all the coefficients are not null. the second form used to obtain a full polynomial is:
+\end{equation}\noindent
+{\it A full polynomial} is, in contrast, a polynomial for which
+all the coefficients are not null. A full polynomial is defined by:
 %%\begin{equation}
        %%\forall \alpha_{i} \in C,\forall n_{i}\in N^{*}; P(z)= \sum^{n}_{i=1}(z^{n^{i}}.a_{i})
 %%\end{equation}
 %%\begin{equation}
        %%\forall \alpha_{i} \in C,\forall n_{i}\in N^{*}; P(z)= \sum^{n}_{i=1}(z^{n^{i}}.a_{i})
 %%\end{equation}
@@ -614,113 +689,173 @@ We study two categories of polynomials : the sparse polynomials and the full pol
 \begin{equation}
      {\Large \forall a_{i} \in C, i\in N;  p(x)=\sum^{n}_{i=0} a_{i}.x^{i}} 
 \end{equation}
 \begin{equation}
      {\Large \forall a_{i} \in C, i\in N;  p(x)=\sum^{n}_{i=0} a_{i}.x^{i}} 
 \end{equation}
-With this form, we can have until \textit{n} non zero terms whereas the sparse ones have just two non zero terms.
+%With this form, we can have until \textit{n} non zero terms whereas the sparse ones have just two non zero terms.
 
 %\subsection{The study condition} 
 
 %\subsection{The study condition} 
-The our experiences results concern two parameters which are
-the polynomial degree and the execution time of our program
-to converge on the solution. The polynomial degree allows us
-to validate that our algorithm is powerful with high degree
-polynomials. The execution time remains the
-element-key which justifies our work of parallelization.
-       For our tests we used a CPU Intel(R) Xeon(R) CPU
-E5620@2.40GHz and a GPU K40 (with 6 Go of ram).
+%Two parameters are studied are
+%the polynomial degree and the execution time of our program
+%to converge on the solution. The polynomial degree allows us
+%to validate that our algorithm is powerful with high degree
+%polynomials. The execution time remains the
+%element-key which justifies our work of parallelization.
+For our tests, a CPU Intel(R) Xeon(R) CPU
+E5620@2.40GHz and a GPU K40 (with 6 Go of ram) are used. 
 
 
 %\subsection{Comparative study}
 
 
 %\subsection{Comparative study}
-In this section, we discuss the performance Ehrlich-Aberth method  of root finding polynomials implemented on CPUs and on GPUs.
-
-We performed a set of experiments on the sequential and the parallel algorithms, for both sparse and full polynomials and different sizes. We took into account the execution time, the  polynomial size and the number of threads per block performed by sum or each experiment on CPUs and on GPUs.
+%First, performances of the Ehrlich-Aberth method  of root finding polynomials
+%implemented on CPUs and on GPUs are studied.
 
 
-All experimental results obtained from the simulations are made in double precision data, for a convergence tolerance of the methods set to $10^{-7}$. Since we were more interested in the comparison of the performance behaviors of Ehrlich-Aberth and Durand-Kerner methods on CPUs versus on GPUs. The initialization values of the vector solution of the Ehrlich-Aberth method are given in section 2.2. 
-\subsection{The execution time in seconds of Ehrlich-Aberth algorithm on CPU OpenMP (1 core, 4 cores) vs. on a Tesla GPU}
+We performed a set of experiments on the sequential and the parallel algorithms, for both sparse and full polynomials and different sizes. We took into account the execution times, the  polynomial size and the number of threads per block performed by sum or each experiment on CPU and on GPU.
 
 
+All experimental results obtained from the simulations are made in
+double precision data, the convergence threshold of the methods is set
+to $10^{-7}$.
+%Since we were more interested in the comparison of the
+%performance behaviors of Ehrlich-Aberth and Durand-Kerner methods on
+%CPUs versus on GPUs.
+The initialization values of the vector solution
+of the methods are given in Section~\ref{sec:vec_initialization}.
 
 
-%\begin{figure}[H]
-%\centering
- % \includegraphics[width=0.8\textwidth]{figures/Compar_EA_algorithm_CPU_GPU}
-%\caption{The execution time in seconds of Ehrlich-Aberth algorithm on CPU core vs. on a Tesla GPU}
-%\label{fig:01}
-%\end{figure}
+\subsection{Comparison of execution times of the Ehrlich-Aberth method
+  on a CPU with OpenMP (1 core and 4 cores) vs. on a Tesla GPU}
 
 
-\begin{figure}[H]
+\begin{figure}[htbp]
 \centering
   \includegraphics[width=0.8\textwidth]{figures/openMP-GPU}
 \centering
   \includegraphics[width=0.8\textwidth]{figures/openMP-GPU}
-\caption{The execution time in seconds of Ehrlich-Aberth algorithm on CPU OpenMP (1 core, 4 cores) vs. on a Tesla GPU}
+\caption{Comparison of execution times  of the Ehrlich-Aberth method
+  on a CPU with OpenMP (1 core, 4 cores) and on a Tesla GPU}
 \label{fig:01}
 \end{figure}
 \label{fig:01}
 \end{figure}
-Figure 1 %%show a comparison of execution time between the parallel and sequential version of the Ehrlich-Aberth algorithm with sparse polynomial exceed 100000, 
-We report respectively the execution time of the Ehrlich-Aberth method implemented initially on one core of the Quad-Core Xeon E5620 CPU than on four cores of the same machine with \textit{OpenMP} platform and the execution time of the same method implemented on one Nvidia Tesla K40c GPU, with sparse polynomial degrees ranging from 100,000 to 1,000,000. We can see that the method implemented on the GPU are faster than those implemented on the CPU (4 cores). This is due to the GPU ability to compute the data-parallel functions faster than its CPU counterpart. However, the execution time for the CPU(4 cores) implementation exceed 5,000 s for 250,000 degrees polynomials, in counterpart  the GPU implementation for the same polynomials not reach 100 s, more than again, with an execution time under to 2500 s CPU (4 cores) implementation can resolve polynomials degrees of only 200,000, whereas GPU implementation can resolve polynomials more than 1,000,000 degrees. We can also notice that the GPU implementation are almost 47 faster then those implementation on the CPU(4 cores). However the CPU(4 cores) implementation are almost 4 faster then his implementation on CPU (1 core). Furthermore, we verify that the number of iterations and the convergence precision is the same for the both CPU and GPU implementation. %This reduction of time allows us to compute roots of polynomial of more important degree at the same time than with a CPU.
+%%Figure 1 %%show a comparison of execution time between the parallel
+%%and sequential version of the Ehrlich-Aberth algorithm with sparse
+%%polynomial exceed 100000,
+
+In Figure~\ref{fig:01}, we report the execution times of the
+Ehrlich-Aberth method on one core of a Quad-Core Xeon E5620 CPU, on
+four cores on the same machine with \textit{OpenMP} and on a Nvidia
+Tesla K40 GPU.  We chose different sparse polynomials with degrees
+ranging from 100,000 to 1,000,000. We can see that the implementation
+on the GPU is faster than those implemented on the CPU.
+However, the execution time for the
+CPU (4 cores) implementation exceed 5,000s for 250,000 degrees
+polynomials. In counterpart, the GPU implementation for the same
+polynomials do not take more 100s. With the GPU
+we can solve high degrees polynomials very quickly up to degree
+ of 1,000,000. We can also notice that the GPU implementation are
+ almost 40 faster then those implementation on the CPU (4 cores).
+
+
+
+%This reduction of time allows us to compute roots of polynomial of more important degree at the same time than with a CPU.
  
  %We notice that the convergence precision is a round $10^{-7}$ for the both implementation on CPU and GPU. Consequently, we can conclude that Ehrlich-Aberth on GPU are faster and accurately then CPU implementation.
 
 \subsection{Influence of the number of threads on the execution times of different polynomials (sparse and full)}
  
  %We notice that the convergence precision is a round $10^{-7}$ for the both implementation on CPU and GPU. Consequently, we can conclude that Ehrlich-Aberth on GPU are faster and accurately then CPU implementation.
 
 \subsection{Influence of the number of threads on the execution times of different polynomials (sparse and full)}
-To optimize the performances of an algorithm on a GPU, it is necessary to maximize the use of cores GPU (maximize the number of threads executed in parallel) and to optimize the use of the various memoirs GPU. In fact, it is interesting to see the influence of the number of threads per block on the execution time of Ehrlich-Aberth algorithm. 
-For that, we notice that the maximum number of threads per block for the Nvidia Tesla K40 GPU is 1024, so we varied the number of threads per block from 8 to 1024. We took into account the execution time for both sparse and full of 10 different polynomials of size 50000 and 10 different polynomials of size 500000 degrees.
+To optimize the performances of an algorithm on a GPU, it is necessary to maximize the use of cores GPU (maximize the number of threads executed in parallel). In fact, it is interesting to see the influence of the number of threads per block on the execution time of Ehrlich-Aberth algorithm. 
+For that, we notice that the maximum number of threads per block for the Nvidia Tesla K40 GPU is 1,024, so we varied the number of threads per block from 8 to 1,024. We took into account the execution time for both sparse and full of 10 different polynomials of size 50,000 and 10 different polynomials of size 500,000 degrees.
 
 
-\begin{figure}[H]
+\begin{figure}[htbp]
 \centering
   \includegraphics[width=0.8\textwidth]{figures/influence_nb_threads}
 \caption{Influence of the number of threads on the execution times of different polynomials (sparse and full)}
 \centering
   \includegraphics[width=0.8\textwidth]{figures/influence_nb_threads}
 \caption{Influence of the number of threads on the execution times of different polynomials (sparse and full)}
-\label{fig:01}
+\label{fig:02}
 \end{figure}
 
 The figure 2 show that, the best execution time for both sparse and full polynomial are given when the threads number varies between 64 and 256 threads per bloc. We notice that with small polynomials the best number of threads per block is 64, Whereas, the large polynomials the best number of threads per block is 256. However,In the following experiments we specify that the number of thread by block is 256.
 
 \end{figure}
 
 The figure 2 show that, the best execution time for both sparse and full polynomial are given when the threads number varies between 64 and 256 threads per bloc. We notice that with small polynomials the best number of threads per block is 64, Whereas, the large polynomials the best number of threads per block is 256. However,In the following experiments we specify that the number of thread by block is 256.
 
-\subsection{The impact of exp-log solution to compute very high degrees of  polynomial}
+\subsection{Influence of exp-log solution to compute high degree polynomials}
 
 
-In this experiment we report the performance of log.exp solution describe in ~\ref{sec2} to compute very high degrees polynomials.   
-\begin{figure}[H]
+In this experiment we report the performance of the exp-log solution described in Section~\ref{sec2} to compute very high degrees polynomials.   
+\begin{figure}[htbp]
 \centering
   \includegraphics[width=0.8\textwidth]{figures/sparse_full_explog}
 \caption{The impact of exp-log solution to compute very high degrees of  polynomial.}
 \centering
   \includegraphics[width=0.8\textwidth]{figures/sparse_full_explog}
 \caption{The impact of exp-log solution to compute very high degrees of  polynomial.}
-\label{fig:01}
+\label{fig:03}
 \end{figure}
 
 \end{figure}
 
-The figure 3, show a comparison between the execution time of the Ehrlich-Aberth algorithm applying log-exp solution and the execution time of the Ehrlich-Aberth algorithm without applying log-exp solution, with full and sparse polynomials degrees. We can see that the execution time for the both algorithms are the same while the full polynomials degrees are less than 4000 and full polynomials are less than 150,000. After,we show clearly that the classical version of Ehrlich-Aberth algorithm (without applying log.exp) stop to converge and can not solving any polynomial sparse or full. In counterpart, the new version of Ehrlich-Aberth algorithm (applying log.exp solution) can solve very high and large full polynomial exceed 100,000 degrees.
 
 
-in fact, when the modulus of the roots are up than \textit{R} given in ~\ref{R},this exceed the limited number in the mantissa of floating points representations and can not compute the iterative function given in ~\ref{eq:Aberth-H-GS} to obtain the root solution, who justify the divergence of the classical Ehrlich-Aberth algorithm. However, applying log.exp solution given in ~\ref{sec2} took into account the limit of floating using the iterative function in(Eq.~\ref{Log_H1},Eq.~\ref{Log_H2} and allows to solve a very large polynomials degrees . 
+Figure~\ref{fig:03} shows a comparison between the execution time of
+the Ehrlich-Aberth method using the exp-log solution and the
+execution time of the Ehrlich-Aberth method without this solution,
+with full and sparse polynomials degrees. We can see that the
+execution times for both algorithms are the same with full polynomials
+degrees less than 4,000 and sparse polynomials less than 150,000. We
+also clearly show that the classical version (without exp-log) of
+Ehrlich-Aberth algorithm do not converge after these degree with
+sparse and full polynomials. In counterpart, the new version of
+Ehrlich-Aberth algorithm with the exp-log solution can solve very
+high degree polynomials.
 
 
+%in fact, when the modulus of the roots are up than \textit{R} given in ~\ref{R},this exceed the limited number in the mantissa of floating points representations and can not compute the iterative function given in ~\ref{eq:Aberth-H-GS} to obtain the root solution, who justify the divergence of the classical Ehrlich-Aberth algorithm. However, applying exp-log solution given in ~\ref{sec2} took into account the limit of floating using the iterative function in(Eq.~\ref{Log_H1},Eq.~\ref{Log_H2} and allows to solve a very large polynomials degrees . 
 
 
-%\begin{figure}[H]
-\%centering
-  %\includegraphics[width=0.8\textwidth]{figures/log_exp_Sparse}
-%\caption{The impact of exp-log solution to compute very high degrees of  polynomial.}
-%\label{fig:01}
-%\end{figure}
 
 
-%we report the performances of the exp.log for the Ehrlich-Aberth algorithm for solving very high degree of polynomial. 
 
 
-\subsection{A comparative study between Ehrlich-Aberth algorithm and Durand-kerner algorithm}
-In this part, we are interesting to compare the simultaneous methods, Ehrlich-Aberth and Durand-Kerner in parallel computer using GPU. We took into account the execution time, the number of iteration and the polynomial's size. for the both sparse and full polynomials.  
 
 
-\begin{figure}[H]
+\subsection{Comparison of the Durand-Kerner and the Ehrlich-Aberth methods}
+
+In this part, we  compare the Durand-Kerner and the Ehrlich-Aberth
+methods on GPU. We took into account the execution times, the number of iterations and the polynomials size for the both sparse and full polynomials.  
+
+\begin{figure}[htbp]
 \centering
   \includegraphics[width=0.8\textwidth]{figures/EA_DK}
 \centering
   \includegraphics[width=0.8\textwidth]{figures/EA_DK}
-\caption{The execution time of Ehrlich-Aberth versus Durand-Kerner algorithm on GPU}
-\label{fig:01}
+\caption{Execution times of the  Durand-Kerner and the Ehrlich-Aberth methods on GPU}
+\label{fig:04}
 \end{figure}
 
 \end{figure}
 
-This figure show the execution time of the both algorithm EA and DK with sparse polynomial degrees ranging from 1000 to 1000000. We can see that the Ehrlich-Aberth algorithm are faster than Durand-Kerner algorithm, with an average of 25 times as fast. Then, when degrees of polynomial exceed 500000 the execution time with EA is of the order 100 whereas DK passes in the order 1000. %with double precision not exceed $10^{-5}$.
+Figure~\ref{fig:04} shows the execution times of both methods with
+sparse polynomial degrees ranging from 1,000 to 1,000,000. We can see
+that the Ehrlich-Aberth algorithm is faster than Durand-Kerner
+algorithm, with an average of 25 times faster. Then, when degrees of
+polynomial exceed 500,000 the execution times with DK are very long.
 
 
-\begin{figure}[H]
+%with double precision not exceed $10^{-5}$.
+
+\begin{figure}[htbp]
 \centering
   \includegraphics[width=0.8\textwidth]{figures/EA_DK_nbr}
 \centering
   \includegraphics[width=0.8\textwidth]{figures/EA_DK_nbr}
-\caption{The iteration number of Ehrlich-Aberth versus Durand-Kerner algorithm}
-\label{fig:01}
+\caption{The number of iterations to converge for the Ehrlich-Aberth
+  and the Durand-Kerner methods}
+\label{fig:05}
 \end{figure}
 
 \end{figure}
 
-%\subsubsection{The execution time of Ehrlich-Aberth algorithm on OpenMP(1 core, 4 cores) vs. on a Tesla GPU}
+Figure~\ref{fig:05} show the evaluation of the number of iteration according
+to degree of polynomial from both EA and DK algorithms, we can see
+that the iteration number of DK is of order 100 while EA is of order
+10. Indeed the computing of the derivative of P (the polynomial to
+resolve) in the iterative function (Eq.~\ref{Eq:Hi}) executed by EA
+allows the algorithm to converge more quickly. In counterpart, the
+DK operator (Eq.~\ref{DK}) needs low operation, consequently low
+execution time per iteration, but it needs more iterations to converge.
 
 
 
 
+ \section{Conclusion and perspectives}
+\label{sec7}
+In this paper we have presented the parallel implementation
+Ehrlich-Aberth method on GPU for the problem of finding roots
+polynomial. Moreover, we have improved the classical Ehrlich-Aberth
+method which suffers from overflow problems, the exp-log solution
+applied to the iterative function allows to solve high degree
+polynomials.
 
 
+We have performed many experiments with the Ehrlich-Aberth method in
+GPU. These experiments highlight that this method is very efficient in
+GPU compared to all the other implementations. The improvement with
+the exponential logarithm solution allows us to solve sparse and full
+high degree polynomials up to 1,000,000 degree. Hence, it may be
+possible to consider to use polynomial root finding methods in other
+numerical applications on GPU.
 
 
 
 
+In future works, we plan to investigate the possibility of using
+several multiple GPUs simultaneously, either with multi-GPU machine or
+with cluster of GPUs. It may also be interesting to study the
+implementation of other root finding polynomial methods on GPU.
+
 
 
-\section{Conclusion and perspective}
 
 
-\label{sec7}
 \bibliography{mybibfile}
 
 \end{document}
 \bibliography{mybibfile}
 
 \end{document}