-\paragraph{The impact of the thread's number into the convergence of Aberth algorithm}
-
-\begin{table}[!h]
- \centering
- \begin{tabular} {|R{2.5cm}|L{2.5cm}|L{2.5cm}|}
- \hline Thread's numbers & Execution time &Number of iteration\\
- \hline 1024 & 523 & 27\\
- \hline 512 & 449.426 & 24\\
- \hline 256 & 440.805 & 24\\
- \hline 128 & 456.175 & 22\\
- \hline 64 & 472.862 & 23\\
- \hline 32 & 830.152 & 24\\
- \hline 8 & 2632.78 & 23 \\
- \hline
- \end{tabular}
- \caption{The impact of the thread's number into the convergence of Aberth algorithm}
- \label{tab:Theimpactofthethread'snumberintotheconvergenceofAberthalgorithm}
-
-\end{table}
-
-\paragraph{A comparative study between Aberth and Durand-kerner algorithm}
-\begin{table}[htbp]
- \centering
- \begin{tabular} {|R{2cm}|L{2.5cm}|L{2.5cm}|L{1.5cm}|L{1.5cm}|}
- \hline Polynomial's degrees & Aberth $T_{exe}$ & D-Kerner $T_{exe}$ & Aberth iteration & D-Kerner iteration\\
- \hline 5000 & 0.40 & 3.42 & 17 & 138 \\
- \hline 50000 & 3.92 & 385.266 & 17 & 823\\
- \hline 500000 & 497.109 & 4677.36 & 24 & 214\\
- \hline
- \end{tabular}
- \caption{Aberth algorithm compare to Durand-Kerner algorithm}
- \label{tab:AberthAlgorithCompareToDurandKernerAlgorithm}
-\end{table}
+ %We notice that the convergence precision is a round $10^{-7}$ for the both implementation on CPU and GPU. Consequently, we can conclude that Ehrlich-Aberth on GPU are faster and accurately then CPU implementation.
+
+\subsection{Influence of the number of threads on the execution times
+ of different polynomials (sparse and full)}
+
+To optimize the performances of an algorithm on a GPU, it is necessary
+to maximize the use of the GPU cores. In fact, it is interesting to
+see the influence of the number of threads per block on the execution
+time of Ehrlich-Aberth algorithm. For that, we notice that the
+maximum number of threads per block for the Nvidia Tesla K40 GPU is
+1024. So the number of threads per block ranges from 8 to 1024. We
+took into account the execution time for both sparse and full of 10
+different polynomials of size 50,000 and 10 different polynomials of
+size 500,000 degrees.
+
+\begin{figure}[htbp]
+\centering
+ \includegraphics[width=0.8\textwidth]{figures/influence_nb_threads}
+\caption{Influence of the number of threads on the execution times of different polynomials (sparse and full)}
+\label{fig:02}
+\end{figure}
+
+Figure~\ref{fig:02} shows that, the best execution time for both
+sparse and full polynomial are given when the threads number varies
+between 64 and 256 threads per block. We notice that with small
+polynomials the best number of threads per block is 64, whereas the
+large polynomials the best number of threads per block is
+256. However, in the following experiments we specify that the number
+of threads per block is 256.
+
+\subsection{Influence of exponential-logarithm solution to compute very high degrees polynomials}
+
+In this experiment we report the performance of exp-log solution described in Section~\ref{sec2} to compute very high degrees polynomials.
+\begin{figure}[htbp]
+\centering
+ \includegraphics[width=0.8\textwidth]{figures/sparse_full_explog}
+\caption{The impact of exp-log solution to compute very high degrees of polynomial.}
+\label{fig:03}
+\end{figure}
+
+Figure~\ref{fig:03} shows a comparison between the execution time of
+the Ehrlich-Aberth algorithm using the exp.log solution and the
+execution time of the Ehrlich-Aberth algorithm without this solution,
+with full and sparse polynomials degrees. We can see that the
+execution times for both algorithms are the same with full polynomials
+degrees less than 4000 and sparse polynomials less than 150,000. We
+also clearly show that the classical version (without log.exp) of
+Ehrlich-Aberth algorithm do not converge after these degree with
+sparse and full polynomials. In counterpart, the new version of
+Ehrlich-Aberth algorithm with the log.exp solution can solve very
+high degree polynomials.
+
+%in fact, when the modulus of the roots are up than \textit{R} given in ~\ref{R},this exceed the limited number in the mantissa of floating points representations and can not compute the iterative function given in ~\ref{eq:Aberth-H-GS} to obtain the root solution, who justify the divergence of the classical Ehrlich-Aberth algorithm. However, applying log.exp solution given in ~\ref{sec2} took into account the limit of floating using the iterative function in(Eq.~\ref{Log_H1},Eq.~\ref{Log_H2} and allows to solve a very large polynomials degrees .
+
+
+
+\subsection{Comparison of the Durand-Kerner and the Ehrlich-Aberth methods}
+
+In this part, we compare the Durand-Kerner and the Ehrlich-Aberth
+methods on GPU. We took into account the execution time, the number of iteration and the polynomial's size for the both sparse and full polynomials.
+
+\begin{figure}[htbp]
+\centering
+ \includegraphics[width=0.8\textwidth]{figures/EA_DK}
+\caption{Execution times of the Durand-Kerner and the Ehrlich-Aberth methods on GPU}
+\label{fig:04}
+\end{figure}
+
+Figure~\ref{fig:04} shows the execution times of both methods with
+sparse polynomial degrees ranging from 1,000 to 1,000,000. We can see
+that the Ehrlich-Aberth algorithm is faster than Durand-Kerner
+algorithm, with an average of 25 times faster. Then, when degrees of
+polynomial exceed 500000 the execution time with EA is of the order
+100 whereas DK passes in the order 1000.
+
+%with double precision not exceed $10^{-5}$.
+
+\begin{figure}[htbp]
+\centering
+ \includegraphics[width=0.8\textwidth]{figures/EA_DK_nbr}
+\caption{The iteration number of Ehrlich-Aberth versus Durand-Kerner algorithm}
+\label{fig:05}
+\end{figure}
+
+This figure show the evaluation of the number of iteration according to degree of polynomial from both EA and DK algorithms, we can see that the iteration number of DK is of order 100 while EA is of order 10. Indeed the computing of derivative of P (the polynomial to resolve) in the iterative function(Eq.~\ref{Eq:Hi}) executed by EA, offers him a possibility to converge more quickly. In counterpart the DK operator(Eq.~\ref{DK}) need low operation, consequently low execution time per iteration,but it need lot of iteration to converge.
+
+
+ \section{Conclusion and perspective}
+\label{sec7}
+In this paper we have presented the parallel implementation Ehrlich-Aberth method on GPU and on CPU (openMP) for the problem of finding roots polynomial. Moreover, we have improved the classical Ehrlich-Aberth method witch suffer of overflow problems, the exp.log solution applying to the iterative function to resolve high degree polynomial.
+
+Then, we have described the parallel implementation of the Ehrlich-Aberth algorithm on GPU.
+We have performed some experiments on Ehrlich-Aberth algorithm in CPU and GPU from the both sparse and full polynomial. These experiments lead us to conclude that the iterative methods using data-parallel operations are more efficient on the GPU than on the CPU. Moreover, the experiment showed that Ehrlich-Aberth algorithm on GPU converge from the both sparse and full polynomials with precision of $10^{-7}$ and the execution time very faster than the CPU version.
+The experiences showed that the improvement brought to Ehrlich-Aberth allows to resolve very large degree polynomial exceed 100,000.
+Finally, we have compared Ehrlich-Aberth algorithm to Durand-Kerner algorithm, we have conclude that Ehrlich-Aberth converges more quickly than Durand-Kerner in execution time, it is due in fact that Ehrlich-Aberth has cubic one convergence While Durand-Kerner is quadratic. In counterpart, the execution time per iteration are very low for Durand-Kerner algorithm compare to the Ehrlich-Aberth algorithm, consequently, it need lot of iterations to converge. We have to notice that Durand-Kerner does not converge for full polynomial which exceed 5000 degrees while Ehrlich-Aberth was able to solve full polynomial of degree 500,000.
+
+In future work, we plan to perform some experiments using several GPU with a cluster of GPU. So it is interesting to implement algorithms using at least two forms of parallelism on GPU and CPU.
+