-All experimental results obtained from the simulations are made in double precision data, for a convergence tolerance of the methods set to $10^{-7}$. Since we were more interested in the comparison of the performance behaviors of Ehrlish-Aberth and Durand-Kerner methods on CPUs versus on GPUs.
-
-\subsubsection{Aberth algorithm on CPU and GPU}
-
-%\begin{table}[!ht]
-% \centering
-% \begin{tabular} {|R{2cm}|L{2.5cm}|L{2.5cm}|L{1.5cm}|L{1.5cm}|}
-% \hline Polynomial's degrees & $T_{exe}$ on CPU & $T_{exe}$ on GPU & CPU iteration & GPU iteration\\
-% \hline 5000 & 1.90 & 0.40 & 18 & 17\\
-% \hline 10000 & 172.723 & 0.59 & 21 & 24\\
-% \hline 20000 & 172.723 & 1.52 & 21 & 25\\
-% \hline 30000 & 172.723 & 2.77 & 21 & 33\\
-% \hline 50000 & 172.723 & 3.92 & 21 & 18\\
-% \hline 500000 & $>$1h & 497.109 & & 24\\
-% \hline 1000000 & $>$1h & 1,524.51& & 24\\
-% \hline
-% \end{tabular}
-% \caption{the convergence of Aberth algorithm}
-% \label{tab:theConvergenceOfAberthAlgorithm}
-%\end{table}
-
+All experimental results obtained from the simulations are made in double precision data, for a convergence tolerance of the methods set to $10^{-7}$. Since we were more interested in the comparison of the performance behaviors of Ehrlich-Aberth and Durand-Kerner methods on CPUs versus on GPUs. The initialization values of the vector solution of the Ehrlich-Aberth method are given in section 2.2.
+\subsubsection{The execution time in seconds of Ehrlich-Aberth algorithm on CPU core vs. on a Tesla GPU}
+
+