\usepackage[ruled,vlined]{algorithm2e}
%\usepackage[french,boxed,linesnumbered]{algorithm2e}
\usepackage{array,multirow,makecell}
+
+\newcommand{\RC}[2][inline]{%
+ \todo[color=blue!10,#1]{\sffamily\textbf{RC:} #2}\xspace}
+\newcommand{\KG}[2][inline]{%
+ \todo[color=green!10,#1]{\sffamily\textbf{KG:} #2}\xspace}
+\newcommand{\AS}[2][inline]{%
+ \todo[color=orange!10,#1]{\sffamily\textbf{AS:} #2}\xspace}
+
+
\setcellgapes{1pt}
\makegapedcells
\newcolumntype{R}[1]{>{\raggedleft\arraybackslash }b{#1}}
\newcolumntype{C}[1]{>{\centering\arraybackslash }b{#1}}
\modulolinenumbers[5]
+
+
\journal{Journal of \LaTeX\ Templates}
%%%%%%%%%%%%%%%%%%%%%%%
algorithm for the root finding problem for high degree polynomials on
GPU architectures. The main result of this
work is to be able to solve high degree polynomials (up
-to 1,000,000) very efficiently. We also compare the results with a
+to 1,000,000) efficiently. We also compare the results with a
sequential implementation and the Durand-Kerner method on full and
sparse polynomials.
\end{abstract}