]> AND Private Git Repository - kahina_paper1.git/blobdiff - paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
new
[kahina_paper1.git] / paper.tex
index 76b626e2b46a919c49ea888d44f23733381c28dd..c4fa445d8761f8d5dd84a07753ab6a3196b02b86 100644 (file)
--- a/paper.tex
+++ b/paper.tex
@@ -308,7 +308,7 @@ but we prefer the latter one because we can use it to improve the
 Ehrlich-Aberth method and find the roots of very high degrees polynomials. More
 details are given in Section ~\ref{sec2}.
 \subsection{Convergence Condition}
-The convergence condition determines the termination of the algorithm. It consists in stopping from running the iterative function  when the roots are sufficiently stable. We consider that the method converges sufficiently when:
+The convergence condition determines the termination of the algorithm. It consists in stopping the iterative function  when the roots are sufficiently stable. We consider that the method converges sufficiently when:
 
 \begin{equation}
 \label{eq:Aberth-Conv-Cond}
@@ -319,7 +319,8 @@ The convergence condition determines the termination of the algorithm. It consis
 
 \section{Improving the Ehrlich-Aberth Method for high degree polynomials with exp.log formulation}
 \label{sec2}
-The Ehrlich-Aberth method implementation suffers of overflow problems. This
+With high degree polynomial, the Ehrlich-Aberth method implementation,
+as well as the Durand-Kerner implement, suffers from overflow problems. This
 situation occurs, for instance, in the case where a polynomial
 having positive coefficients and a large degree is computed at a
 point $\xi$ where $|\xi| > 1$, where $|x|$ stands for the modolus of a complex $x$. Indeed, the limited number in the
@@ -347,7 +348,7 @@ Using the logarithm (eq.~\ref{deflncomplex}) and the exponential (eq.~\ref{defex
 manipulate lower absolute values and the roots for large polynomial's degrees can be looked for successfully~\cite{Karimall98}.
 
 Applying this solution for the Ehrlich-Aberth method we obtain the
-iteration function with logarithm:
+iteration function with exponential and logarithm:
 %%$$ \exp \bigl(  \ln(p(z)_{k})-ln(\ln(p(z)_{k}^{'}))- \ln(1- \exp(\ln(p(z)_{k})-ln(\ln(p(z)_{k}^{'})+\ln\sum_{i\neq j}^{n}\frac{1}{z_{k}-z_{j}})$$
 \begin{equation}
 \label{Log_H2}