]> AND Private Git Repository - kahina_paper1.git/blobdiff - paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Ajout d'une figure sur OpenMP vs GPU
[kahina_paper1.git] / paper.tex
index c12aeda99cb2c577b87e07c042a188fccd83e50e..04e13163673af29261f326e2e392a659b3890f81 100644 (file)
--- a/paper.tex
+++ b/paper.tex
@@ -1,7 +1,7 @@
 \documentclass[review]{elsarticle}
 
 \usepackage{lineno,hyperref}
 \documentclass[review]{elsarticle}
 
 \usepackage{lineno,hyperref}
-%%\usepackage[utf8]{inputenc}
+\usepackage[utf8]{inputenc}
 %%\usepackage[T1]{fontenc}
 %%\usepackage[french]{babel}
 \usepackage{float} 
 %%\usepackage[T1]{fontenc}
 %%\usepackage[french]{babel}
 \usepackage{float} 
 
 \begin{frontmatter}
 
 
 \begin{frontmatter}
 
-\title{Rapid solution of very high degree polynomials root finding using GPU}
+\title{Efficient high degree polynomial root finding using GPU}
 
 %% Group authors per affiliation:
 
 %% Group authors per affiliation:
-\author{Elsevier\fnref{myfootnote}}
-\address{Radarweg 29, Amsterdam}
-\fntext[myfootnote]{Since 1880.}
+%\author{Elsevier\fnref{myfootnote}}
+%\address{Radarweg 29, Amsterdam}
+%\fntext[myfootnote]{Since 1880.}
 
 %% or include affiliations in footnotes:
 
 %% or include affiliations in footnotes:
-\author[mymainaddress]{Ghidouche Kahina\corref{mycorrespondingauthor}}
-%%\ead[url]{kahina.ghidouche@gmail.com}
+\author[mymainaddress]{Kahina Ghidouche}
+%%\ead[url]{kahina.ghidouche@univ-bejaia.dz}
 \cortext[mycorrespondingauthor]{Corresponding author}
 \cortext[mycorrespondingauthor]{Corresponding author}
-\ead{kahina.ghidouche@gmail.com}
+\ead{kahina.ghidouche@univ-bejaia.dz}
 
 
-\author[mysecondaryaddress]{Couturier Raphael\corref{mycorrespondingauthor}}
+\author[mysecondaryaddress]{Raphaël Couturier\corref{mycorrespondingauthor}}
 %%\cortext[mycorrespondingauthor]{Corresponding author}
 \ead{raphael.couturier@univ-fcomte.fr}
 
 %%\cortext[mycorrespondingauthor]{Corresponding author}
 \ead{raphael.couturier@univ-fcomte.fr}
 
-\author[mymainaddress]{Abderrahmane Sider\corref{mycorrespondingauthor}}
+\author[mymainaddress]{Abderrahmane Sider}
 %%\cortext[mycorrespondingauthor]{Corresponding author}
 \ead{ar.sider@univ-bejaia.dz}
 
 %%\cortext[mycorrespondingauthor]{Corresponding author}
 \ead{ar.sider@univ-bejaia.dz}
 
-\address[mymainaddress]{Department of informatics,University of Bejaia,Algeria}
-\address[mysecondaryaddress]{FEMTO-ST Institute, University of Franche-Compté }
+\address[mymainaddress]{Laboratoire LIMED, Faculté des sciences
+  exactes, Université de Bejaia, 06000, Algeria}
+\address[mysecondaryaddress]{FEMTO-ST Institute, University of
+  Bourgogne Franche-Comte, France }
 
 \begin{abstract}
 
 \begin{abstract}
-Polynomials are mathematical algebraic structures that play a great role in science and engineering. But the process of solving them  for high and large degrees is computationally demanding and still not solved. In this paper, we present the results of a parallel implementation of the Ehrlich-Aberth algorithm for the problem root finding for
-high degree polynomials on GPU architectures (Graphics Processing Unit). The main result of this work is to be able to solve high and very large degree polynomials (up to 100000) very efficiently. We also compare the results with a sequential implementation and the Durand-Kerner method on full and sparse polynomials.
+Polynomials are mathematical algebraic structures that play a great
+role in science and engineering. Finding roots of high degree
+polynomials is computationally demanding. In this paper, we present
+the results of a parallel implementation of the Ehrlich-Aberth
+algorithm for the root finding problem for high degree polynomials on
+GPU architectures. The main result of this
+work is to be able to solve high degree polynomials (up
+to 1,000,000) very efficiently. We also compare the results with a
+sequential implementation and the Durand-Kerner method on full and
+sparse polynomials.
 \end{abstract}
 
 \begin{keyword}
 \end{abstract}
 
 \begin{keyword}
-root finding of polynomials, high degree, iterative methods, Ehrlich-Aberth, Durant-Kerner, GPU, CUDA, CPU , Parallelization
+Polynomial root finding, Iterative methods, Ehrlich-Aberth, Durand-Kerner, GPU
 \end{keyword}
 
 \end{frontmatter}
 \end{keyword}
 
 \end{frontmatter}
@@ -124,22 +134,25 @@ Generally speaking, algorithms for solving problems can be divided into
 two main groups: direct methods and iterative methods.
 \\
 Direct methods exist only for $n \leq 4$, solved in closed form by G. Cardano
 two main groups: direct methods and iterative methods.
 \\
 Direct methods exist only for $n \leq 4$, solved in closed form by G. Cardano
-in the mid-16th century. However, N.H. Abel in the early 19th
+in the mid-16th century. However, N. H. Abel in the early 19th
 century showed that polynomials of degree five or more could not
 century showed that polynomials of degree five or more could not
-be solved by  directs methods. Since then, mathmathicians have
+be solved by  direct methods. Since then, mathmathicians have
 focussed on numerical (iterative) methods such as the famous
 focussed on numerical (iterative) methods such as the famous
-Newton's method, Bernoulli's method of the 18th, and Graeffe's.
+Newton method, the Bernoulli method of the 18th, and the Graeffe method.
 
 
-Later on, with the advent of electronic computers, other methods has
-been developed such as the Jenkins-Traub method, Larkin's method,
-Muller's method, and several methods for simultaneous
+Later on, with the advent of electronic computers, other methods have
+been developed such as the Jenkins-Traub method, the Larkin method,
+the Muller method, and several methods for simultaneous
 approximation of all the roots, starting with the Durand-Kerner (DK)
 approximation of all the roots, starting with the Durand-Kerner (DK)
-method :
+method:
 %%\begin{center}
 \begin{equation}
 %%\begin{center}
 \begin{equation}
- Z_{i}=Z_{i}-\frac{P(Z_{i})}{\prod_{i\neq j}(z_{i}-z_{j})}
+ Z_i^{k+1}=Z_{i}^k-\frac{P(Z_i^k)}{\prod_{i\neq j}(Z_i^k-Z_j^k)}
 \end{equation}
 %%\end{center}
 \end{equation}
 %%\end{center}
+where $Z_i^k$ is the $i^{th}$ root of the polynomial $P$ at the
+iteration $k$.
+
 
 This formula is mentioned for the first time by
 Weiestrass~\cite{Weierstrass03} as part of the fundamental theorem
 
 This formula is mentioned for the first time by
 Weiestrass~\cite{Weierstrass03} as part of the fundamental theorem
@@ -151,9 +164,11 @@ in the following form by Ehrlich~\cite{Ehrlich67} and
 Aberth~\cite{Aberth73} uses a different iteration formula given as fellows :
 %%\begin{center}
 \begin{equation}
 Aberth~\cite{Aberth73} uses a different iteration formula given as fellows :
 %%\begin{center}
 \begin{equation}
- Z_{i}=Z_{i}-\frac{1}{{\frac {P'(Z_{i})} {P(Z_{i})}}-{\sum_{i\neq j}(z_{i}-z_{j})}}.
+ Z_i^{k+1}=Z_i^k-\frac{1}{{\frac {P'(Z_i^k)} {P(Z_i^k)}}-{\sum_{i\neq j}(Z_i^k-Z_j^k)}}.
 \end{equation}
 %%\end{center}
 \end{equation}
 %%\end{center}
+where $P'(Z)$ is the polynomial derivative of $P$ evaluated in the
+point $Z$.
 
 Aberth, Ehrlich and Farmer-Loizou~\cite{Loizon83} have proved that
 the Ehrlich-Aberth method (EA) has a cubic order of convergence for simple roots whereas the Durand-Kerner has a quadratic order of convergence.
 
 Aberth, Ehrlich and Farmer-Loizou~\cite{Loizon83} have proved that
 the Ehrlich-Aberth method (EA) has a cubic order of convergence for simple roots whereas the Durand-Kerner has a quadratic order of convergence.
@@ -646,7 +661,8 @@ We report the execution times of the Ehrlich-Aberth method implemented on one co
 
 
 \subsubsection{Influence of the number of threads on the execution times of different polynomials (sparse and full)}
 
 
 \subsubsection{Influence of the number of threads on the execution times of different polynomials (sparse and full)}
-It is also interesting to see the influence of the number of threads per block on the execution time. For that, we notice that the maximum number of threads per block for the Nvidia Tesla K40c GPU is 1024, so we varied the number of threads per block from 8 to 1024. We took into account the execution time for both sparse and full polynomials of size 50000 and 500000 degrees.
+To optimize the performances of an algorithm on a GPU, it is necessary to maximize the use of cores GPU (maximize the number of threads executed in parallel) and to optimize the use of the various memoirs GPU. In fact, it is interesting to see the influence of the number of threads per block on the execution time of Ehrlich-Aberth algorithm. 
+For that, we notice that the maximum number of threads per block for the Nvidia Tesla K40c GPU is 1024, so we varied the number of threads per block from 8 to 1024. We took into account the execution time for both sparse and full polynomials of size 50000 and 500000 degrees.
 
 \begin{figure}[H]
 \centering
 
 \begin{figure}[H]
 \centering
@@ -655,29 +671,29 @@ It is also interesting to see the influence of the number of threads per block o
 \label{fig:01}
 \end{figure}
 
 \label{fig:01}
 \end{figure}
 
-The figure 2 show that, the best execution time for both sparse and full polynomial are given while the threads number varies between 64 and 256 threads per bloc. We notice that with small polynomials the number of threads per block is 64, Whereas, the large polynomials the number of threads per block is 256. However,In the following experiments we specify that the number of thread by block is 256.
+The figure 2 show that, the best execution time for both sparse and full polynomial are given when the threads number varies between 64 and 256 threads per bloc. We notice that with small polynomials the best number of threads per block is 64, Whereas, the large polynomials the best number of threads per block is 256. However,In the following experiments we specify that the number of thread by block is 256.
 
 \subsubsection{The impact of exp-log solution to compute very high degrees of  polynomial}
 
 In this experiment we report the performance of log.exp solution describe in ~\ref{sec2} to compute very high degrees polynomials.   
 \begin{figure}[H]
 \centering
 
 \subsubsection{The impact of exp-log solution to compute very high degrees of  polynomial}
 
 In this experiment we report the performance of log.exp solution describe in ~\ref{sec2} to compute very high degrees polynomials.   
 \begin{figure}[H]
 \centering
-  \includegraphics[width=0.8\textwidth]{figures/log_exp}
+  \includegraphics[width=0.8\textwidth]{figures/sparse_full_explog}
 \caption{The impact of exp-log solution to compute very high degrees of  polynomial.}
 \label{fig:01}
 \end{figure}
 
 \caption{The impact of exp-log solution to compute very high degrees of  polynomial.}
 \label{fig:01}
 \end{figure}
 
-The figure 3, show a comparison between the execution time of the Ehrlich-Aberth algorithm applying log-exp solution and the execution time of the Ehrlich-Aberth algorithm without applying log-exp solution, with full polynomials degrees. We can see that the execution time for the both algorithms are the same while the polynomials degrees are less than 4500. After,we show clearly that the classical version of Ehrlich-Aberth algorithm (without applying log.exp) stop to converge and can not solving polynomial exceed 4500, in counterpart, the new version of Ehrlich-Aberth algorithm (applying log.exp solution) can solve very high and large full polynomial exceed 100,000 degrees.
+The figure 3, show a comparison between the execution time of the Ehrlich-Aberth algorithm applying log-exp solution and the execution time of the Ehrlich-Aberth algorithm without applying log-exp solution, with full and sparse polynomials degrees. We can see that the execution time for the both algorithms are the same while the full polynomials degrees are less than 4000 and full polynomials are less than 150,000. After,we show clearly that the classical version of Ehrlich-Aberth algorithm (without applying log.exp) stop to converge and can not solving any polynomial sparse or full. In counterpart, the new version of Ehrlich-Aberth algorithm (applying log.exp solution) can solve very high and large full polynomial exceed 100,000 degrees.
 
 
-in fact, when the modulus of the roots are up than \textit{R} given in ~\ref{R},this exceed the limited number in the mantissa of floating points representations and can not compute the iterative function given in ~\ref{eq:Aberth-H-GS} to obtain the root solution, who justify the divergence of the classical Ehrlich-Aberth algorithm. However, applying log.exp solution given in ~\ref{sec2} took into account the limit of floating using the iterative function in(Eq.~\ref{Log_H1},Eq.~\ref{Log_H2}and allows to solve a very large polynomials degrees . 
+in fact, when the modulus of the roots are up than \textit{R} given in ~\ref{R},this exceed the limited number in the mantissa of floating points representations and can not compute the iterative function given in ~\ref{eq:Aberth-H-GS} to obtain the root solution, who justify the divergence of the classical Ehrlich-Aberth algorithm. However, applying log.exp solution given in ~\ref{sec2} took into account the limit of floating using the iterative function in(Eq.~\ref{Log_H1},Eq.~\ref{Log_H2} and allows to solve a very large polynomials degrees . 
 
 
 
 
-\begin{figure}[H]
-\centering
-  \includegraphics[width=0.8\textwidth]{figures/log_exp_Sparse}
-\caption{The impact of exp-log solution to compute very high degrees of  polynomial.}
-\label{fig:01}
-\end{figure}
+%\begin{figure}[H]
+\%centering
+  %\includegraphics[width=0.8\textwidth]{figures/log_exp_Sparse}
+%\caption{The impact of exp-log solution to compute very high degrees of  polynomial.}
+%\label{fig:01}
+%\end{figure}
 
 %we report the performances of the exp.log for the Ehrlich-Aberth algorithm for solving very high degree of polynomial. 
 
 
 %we report the performances of the exp.log for the Ehrlich-Aberth algorithm for solving very high degree of polynomial. 
 
@@ -701,6 +717,20 @@ This figure show the execution time of the both algorithm EA and DK with sparse
 \label{fig:01}
 \end{figure}
 
 \label{fig:01}
 \end{figure}
 
+\subsubsection{The execution time of Ehrlich-Aberth algorithm on OpenMP(1 core, 4 cores) vs. on a Tesla GPU}
+
+\begin{figure}[H]
+\centering
+  \includegraphics[width=0.8\textwidth]{figures/openMP-GPU}
+\caption{The execution time of Ehrlich-Aberth algorithm on OpenMP(1core, 4cores) and GPU(Tesla k40)}
+\label{fig:01}
+\end{figure}
+
+
+
+
+\section{Conclusion and perspective}
+
 \bibliography{mybibfile}
 
 \end{document}
 \bibliography{mybibfile}
 
 \end{document}