of $Z^{(k)}$, according to formula Eq.~\ref{eq:Aberth-Conv-Cond}. We used the functions of the CUBLAS Library (CUDA Basic Linear Algebra Subroutines) to implement this kernel.
The kernel terminates its computations when all the roots have
-converged. Many important remarks should be noticed. First, as blocks
-of threads are scheduled automatically by the GPU, we have absolutely
-no control on the order of the blocks. Consequently, our algorithm is
-executed more or less in an asynchronous iterations way, where blocks
-of roots are updated in a non deterministic way. As the Durand-Kerner
-method has been proved to convergence with asynchronous iterations, we
-think it is similar with the Ehrlich-Aberth method, but we did not try
-to prove this in that paper. Another consequence of that, is that
-several executions of our algorithm with the same polynomials do no
-give necessarily the same result with the same number of iterations
-(even if the variation is not very significant).
+converged. It should be noticed that, as blocks of threads are
+scheduled automatically by the GPU, we have absolutely no control on
+the order of the blocks. Consequently, our algorithm is executed more
+or less in an asynchronous iteration model, where blocks of roots are
+updated in a non deterministic way. As the Durand-Kerner method has
+been proved to converge with asynchronous iterations, we think it is
+similar with the Ehrlich-Aberth method, but we did not try to prove
+this in that paper. Another consequence of that, is that several
+executions of our algorithm with the same polynomial do no give
+necessarily the same result (but roots have the same accuracy) and the
+same number of iterations (even if the variation is not very
+significant).
\section{Experimental study}
\label{sec6}
%\subsection{Definition of the used polynomials }
-We study two categories of polynomials : the sparse polynomials and the full polynomials.
-\paragraph{A sparse polynomial}:is a polynomial for which only some coefficients are not null. We use in the following polynomial for which the roots are distributed on 2 distinct circles :
+We study two categories of polynomials: sparse polynomials and the full polynomials.\\
+{\it A sparse polynomial} is a polynomial for which only some
+coefficients are not null. In this paper, we consider sparse polynomials for which the roots are distributed on 2 distinct circles:
\begin{equation}
\forall \alpha_{1} \alpha_{2} \in C,\forall n_{1},n_{2} \in N^{*}; P(z)= (z^{n_{1}}-\alpha_{1})(z^{n_{2}}-\alpha_{2})
-\end{equation}
-
-
-\paragraph{A full polynomial}:is in contrast, a polynomial for which all the coefficients are not null. the second form used to obtain a full polynomial is:
+\end{equation}\noindent
+{\it A full polynomial} is, in contrast, a polynomial for which
+all the coefficients are not null. A full polynomial is defined by:
%%\begin{equation}
%%\forall \alpha_{i} \in C,\forall n_{i}\in N^{*}; P(z)= \sum^{n}_{i=1}(z^{n^{i}}.a_{i})
%%\end{equation}
\begin{equation}
{\Large \forall a_{i} \in C, i\in N; p(x)=\sum^{n}_{i=0} a_{i}.x^{i}}
\end{equation}
-With this form, we can have until \textit{n} non zero terms whereas the sparse ones have just two non zero terms.
+%With this form, we can have until \textit{n} non zero terms whereas the sparse ones have just two non zero terms.
%\subsection{The study condition}
-The our experiences results concern two parameters which are
-the polynomial degree and the execution time of our program
-to converge on the solution. The polynomial degree allows us
-to validate that our algorithm is powerful with high degree
-polynomials. The execution time remains the
-element-key which justifies our work of parallelization.
- For our tests we used a CPU Intel(R) Xeon(R) CPU
-E5620@2.40GHz and a GPU K40 (with 6 Go of ram).
+%Two parameters are studied are
+%the polynomial degree and the execution time of our program
+%to converge on the solution. The polynomial degree allows us
+%to validate that our algorithm is powerful with high degree
+%polynomials. The execution time remains the
+%element-key which justifies our work of parallelization.
+For our tests, a CPU Intel(R) Xeon(R) CPU
+E5620@2.40GHz and a GPU K40 (with 6 Go of ram) is used.
%\subsection{Comparative study}
-In this section, we discuss the performance Ehrlich-Aberth method of root finding polynomials implemented on CPUs and on GPUs.
+%First, performances of the Ehrlich-Aberth method of root finding polynomials
+%implemented on CPUs and on GPUs are studied.
-We performed a set of experiments on the sequential and the parallel algorithms, for both sparse and full polynomials and different sizes. We took into account the execution time, the polynomial size and the number of threads per block performed by sum or each experiment on CPUs and on GPUs.
+We performed a set of experiments on the sequential and the parallel algorithms, for both sparse and full polynomials and different sizes. We took into account the execution times, the polynomial size and the number of threads per block performed by sum or each experiment on CPUs and on GPUs.
All experimental results obtained from the simulations are made in double precision data, for a convergence tolerance of the methods set to $10^{-7}$. Since we were more interested in the comparison of the performance behaviors of Ehrlich-Aberth and Durand-Kerner methods on CPUs versus on GPUs. The initialization values of the vector solution of the Ehrlich-Aberth method are given in section 2.2.
\subsection{The execution time in seconds of Ehrlich-Aberth algorithm on CPU OpenMP (1 core, 4 cores) vs. on a Tesla GPU}
%\subsubsection{The execution time of Ehrlich-Aberth algorithm on OpenMP(1 core, 4 cores) vs. on a Tesla GPU}
+\section{Conclusion and perspective}
+\label{sec7}
+In this paper we have presented the parallel implementation Ehrlich-Aberth method on GPU and on CPU (openMP) for the problem of finding roots polynomial. Moreover, we have improved the classical Ehrlich-Aberth method witch suffer of overflow problems, the exp.log solution applying to the iterative function to resolve high degree polynomial.
+Then, we have described the parallel implementation of the Ehrlich-Aberth algorithm on GPU.
+We have performed some experiments on Ehrlich-Aberth algorithm in CPU and GPU from the both sparse and full polynomial. These experiments lead us to conclude that the iterative methods using data-parallel operations are more efficient on the GPU than on the CPU. Moreover, the experiment showed that Ehrlich-Aberth algorithm on GPU converge from the both sparse and full polynomials with precision of $10^{-7}$ and the execution time very faster than the CPU version.
+The experiences showed that the improvement brought to Ehrlich-Aberth allows to resolve very large degree polynomial exceed 100,000.
+Finally, we have compared Ehrlich-Aberth algorithm to Durand-Kerner algorithm, we have conclude that Ehrlich-Aberth converges more quickly than Durand-Kerner in execution time, it is due in fact that Ehrlich-Aberth has cubic one convergence While Durand-Kerner is quadratic. In counterpart, the execution time per iteration are very low for Durand-Kerner algorithm compare to the Ehrlich-Aberth algorithm, consequently, it need lot of iterations to converge. We have to notice that Durand-Kerner does not converge for full polynomial which exceed 5000 degrees while Ehrlich-Aberth was able to solve full polynomial of degree 500,000.
+In future work, we plan to perform some experiments using several GPU with a cluster of GPU. So it is interesting to implement algorithms using at least two forms of parallelism on GPU and CPU.
-\section{Conclusion and perspective}
-
-\label{sec7}
\bibliography{mybibfile}
\end{document}