X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/kahina_paper1.git/blobdiff_plain/6f76482b569516829ba1ec3f0358dec6c479c001..c5e1141650462fe452663bbf018f1c136914de28:/paper.tex diff --git a/paper.tex b/paper.tex index 9897244..02f98de 100644 --- a/paper.tex +++ b/paper.tex @@ -4,6 +4,7 @@ %%\usepackage[utf8]{inputenc} %%\usepackage[T1]{fontenc} %%\usepackage[french]{babel} +\usepackage{float} \usepackage{amsmath,amsfonts,amssymb} \usepackage[ruled,vlined]{algorithm2e} %\usepackage[french,boxed,linesnumbered]{algorithm2e} @@ -329,7 +330,9 @@ Q(z_{k})=\exp\left( \ln (p(z_{k}))-\ln(p(z_{k}^{'}))+\ln \left( \sum_{k\neq j}^{n}\frac{1}{z_{k}-z_{j}}\right)\right). \end{equation} -This solution is applied when it is necessary ??? When ??? (SIDER) +This solution is applied when the root except the circle unit, represented by the radius $R$ evaluated as: + +$$R = \exp( \log(DBL\_MAX) / (2*n) )$$ where $DBL\_MAX$ stands for the maximum representable double value. \section{The implementation of simultaneous methods in a parallel computer} \label{secStateofArt} @@ -355,7 +358,7 @@ parallelism that can be suitably exploited by SIMD machines. Moreover, they have fast rate of convergence (quadratic for the Durand-Kerner and cubic for the Ehrlisch-Aberth). Various parallel algorithms reported for these methods can be found -in~\cite{Cosnard90, Freeman89,Freemanall90,,Jana99,Janall99}. +in~\cite{Cosnard90, Freeman89,Freemanall90,Jana99,Janall99}. Freeman and Bane~\cite{Freemanall90} presented two parallel algorithms on a local memory MIMD computer with the compute-to communication time ratio O(n). However, their algorithms require @@ -381,6 +384,8 @@ GPUs, which details are discussed in the sequel. \section {A CUDA parallel Ehrlisch-Aberth method} +In the following, we describe the parallel implementation of Ehrlisch-Aberth method on GPU +for solving high degree polynomials. First, the hardware and software of the GPUs are presented. Then, a CUDA parallel Ehrlisch-Aberth method are presented. \subsection{Background on the GPU architecture} A GPU is viewed as an accelerator for the data-parallel and @@ -588,7 +593,6 @@ We study two forms of polynomials the sparse polynomials and the full polynomia \begin{equation} \forall \alpha_{1} \alpha_{2} \in C,\forall n_{1},n_{2} \in N^{*}; P(z)= (z^{n_{1}}-\alpha_{1})(z^{n_{2}}-\alpha_{2}) \end{equation} - This form makes it possible to associate roots having two different modules and thus to work on a polynomial constitute of four non zero terms. @@ -636,7 +640,7 @@ We initially carried out the convergence of Aberth algorithm with various sizes % \label{tab:theConvergenceOfAberthAlgorithm} %\end{table} -\begin{figure}[htbp] +\begin{figure}[H] \centering \includegraphics[width=0.8\textwidth]{figures/Compar_EA_algorithm_CPU_GPU} \caption{Aberth algorithm on CPU and GPU} @@ -665,14 +669,15 @@ We initially carried out the convergence of Aberth algorithm with various sizes %\end{table} -\begin{figure}[htbp] +\begin{figure}[H] \centering \includegraphics[width=0.8\textwidth]{figures/influence_nb_threads} \caption{Influence of the number of threads on the execution times of different polynomials (sparse and full)} \label{fig:01} \end{figure} -\begin{figure}[htbp] +\subsubsection{The impact of exp-log solution to compute very high degrees of polynomial} +\begin{figure}[H] \centering \includegraphics[width=0.8\textwidth]{figures/log_exp} \caption{The impact of exp-log solution to compute very high degrees of polynomial.} @@ -680,18 +685,14 @@ We initially carried out the convergence of Aberth algorithm with various sizes \end{figure} \subsubsection{A comparative study between Aberth and Durand-kerner algorithm} -\begin{table}[htbp] - \centering - \begin{tabular} {|R{2cm}|L{2.5cm}|L{2.5cm}|L{1.5cm}|L{1.5cm}|} - \hline Polynomial's degrees & Aberth $T_{exe}$ & D-Kerner $T_{exe}$ & Aberth iteration & D-Kerner iteration\\ - \hline 5000 & 0.40 & 3.42 & 17 & 138 \\ - \hline 50000 & 3.92 & 385.266 & 17 & 823\\ - \hline 500000 & 497.109 & 4677.36 & 24 & 214\\ - \hline - \end{tabular} - \caption{Aberth algorithm compare to Durand-Kerner algorithm} - \label{tab:AberthAlgorithCompareToDurandKernerAlgorithm} -\end{table} + + +\begin{figure}[H] +\centering + \includegraphics[width=0.8\textwidth]{figures/EA_DK} +\caption{Ehrlisch-Aberth and Durand-Kerner algorithm on GPU} +\label{fig:01} +\end{figure} \bibliography{mybibfile}