X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/kahina_paper1.git/blobdiff_plain/6f76482b569516829ba1ec3f0358dec6c479c001..cfd82bbfb39a9364876ec4ae2e03ec4877c7cda1:/paper.tex diff --git a/paper.tex b/paper.tex index 9897244..b9ed2ff 100644 --- a/paper.tex +++ b/paper.tex @@ -4,6 +4,7 @@ %%\usepackage[utf8]{inputenc} %%\usepackage[T1]{fontenc} %%\usepackage[french]{babel} +\usepackage{float} \usepackage{amsmath,amsfonts,amssymb} \usepackage[ruled,vlined]{algorithm2e} %\usepackage[french,boxed,linesnumbered]{algorithm2e} @@ -588,7 +589,6 @@ We study two forms of polynomials the sparse polynomials and the full polynomia \begin{equation} \forall \alpha_{1} \alpha_{2} \in C,\forall n_{1},n_{2} \in N^{*}; P(z)= (z^{n_{1}}-\alpha_{1})(z^{n_{2}}-\alpha_{2}) \end{equation} - This form makes it possible to associate roots having two different modules and thus to work on a polynomial constitute of four non zero terms. @@ -636,7 +636,7 @@ We initially carried out the convergence of Aberth algorithm with various sizes % \label{tab:theConvergenceOfAberthAlgorithm} %\end{table} -\begin{figure}[htbp] +\begin{figure}[H] \centering \includegraphics[width=0.8\textwidth]{figures/Compar_EA_algorithm_CPU_GPU} \caption{Aberth algorithm on CPU and GPU} @@ -665,14 +665,15 @@ We initially carried out the convergence of Aberth algorithm with various sizes %\end{table} -\begin{figure}[htbp] +\begin{figure}[H] \centering \includegraphics[width=0.8\textwidth]{figures/influence_nb_threads} \caption{Influence of the number of threads on the execution times of different polynomials (sparse and full)} \label{fig:01} \end{figure} -\begin{figure}[htbp] +\subsubsection{The impact of exp-log solution to compute very high degrees of polynomial} +\begin{figure}[H] \centering \includegraphics[width=0.8\textwidth]{figures/log_exp} \caption{The impact of exp-log solution to compute very high degrees of polynomial.} @@ -680,18 +681,14 @@ We initially carried out the convergence of Aberth algorithm with various sizes \end{figure} \subsubsection{A comparative study between Aberth and Durand-kerner algorithm} -\begin{table}[htbp] - \centering - \begin{tabular} {|R{2cm}|L{2.5cm}|L{2.5cm}|L{1.5cm}|L{1.5cm}|} - \hline Polynomial's degrees & Aberth $T_{exe}$ & D-Kerner $T_{exe}$ & Aberth iteration & D-Kerner iteration\\ - \hline 5000 & 0.40 & 3.42 & 17 & 138 \\ - \hline 50000 & 3.92 & 385.266 & 17 & 823\\ - \hline 500000 & 497.109 & 4677.36 & 24 & 214\\ - \hline - \end{tabular} - \caption{Aberth algorithm compare to Durand-Kerner algorithm} - \label{tab:AberthAlgorithCompareToDurandKernerAlgorithm} -\end{table} + + +\begin{figure}[H] +\centering + \includegraphics[width=0.8\textwidth]{figures/EA_DK} +\caption{Ehrlisch-Aberth and Durand-Kerner algorithm on GPU} +\label{fig:01} +\end{figure} \bibliography{mybibfile}