X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/kahina_paper1.git/blobdiff_plain/c5f581ffe6e32e34c3fb1048707698d5d4b67c53..ecaedaa4cc57e72048e767408584391c4b8e81a0:/Root.tex?ds=inline diff --git a/Root.tex b/Root.tex index c2359b7..2ee2c28 100644 --- a/Root.tex +++ b/Root.tex @@ -54,9 +54,10 @@ $ Z_{i}=Z_{i}-\frac{P(Z_{i})}{\prod_{i\neq j}(z_{i}-z_{j})} $ This formula is mentioned for the first time from Weiestrass [12] as part of the fundamental theorem of Algebra and is rediscovered -from Ilieff [2], Docev [3], Durand [4], Kerner [5]. Another method -discovered from Borsch-Supan [6] and also described and brought in -the following form from Ehrlich [7] and Aberth [8] +from Ilieff~\cite{Ilief50} [2], Docev [3], Durand [4], Kerner [5]. +Another method discovered from Borsch-Supan [6] and also described +and brought in the following form from Ehrlich [7] and +Aberth~\cite{Aberth73}. \begin{center} $ Z_{i}=Z_{i}-\frac{1}{{\frac {P'(Z_{i})} @@ -112,68 +113,164 @@ and compare it with the Durand Kerner implementation.................To be continued.................. +\section{Aberth method and difficulties} +A cubically convergent iteration method for finding zeros of +polynomials was proposed by O.Aberth[?].The Aberth method is a +purely algebraic derivation.To illustrate the derivation, we let +$w_{i}(z)$ be the product of linear factor $ w_{i}(z)=\prod_{j=1,j +\neq i}^{n} (z-x_{j})$ -\bibliographystyle{alpha} -\begin{thebibliography}{2} +and rational function $R_{i}(z)$ be the correction term of +Weistrass method (?) +$$R_{i}(z)=\dfrac{p(z)}{w_{i}(Z)} , i=1,2,...,n. $$ -\bibitem [1] {1} O. Aberth, Iteration Methods for Finding -all Zeros of a Polynomial Simultaneously, Math. Comput. 27, 122 -(1973) 339–344. +Differentiating the rational function $R_{i}(z)$ and applying the +Newton method, we have +$$\dfrac{R_{i}(z)}{R_{i}^{'}(z)}= \dfrac{p(z)}{p^{'}(z)-p(z)\dfrac{w_{i}(z)}{w_{i}^{'}(z)}}= \dfrac{p(z)}{p^{'}(z)-p(z) \sum _{j=1,j \neq i}^{n}\dfrac{1}{z-x_{i}}}, i=1,2,...,n $$ +Substituting $x_{j}$ for z we obtain the Aberth iteration method -\bibitem [2] {2} Ilieff, L. (1948-50), On the approximations of Newton, Annual -Sofia Univ. 46, 167-171. +Let present the means stages of Aberth's method. -\bibitem [3] {3} Docev, K. (1962), An alternative method of Newton for -simultaneous calculation of all the roots of a given algebraic -equation, Phys. Math. J., Bulg. Acad. Sci. 5, 136-139. +\subsection{Polynomials Initialization} + The initialization of polynomial P(z) with complex coefficients + are given by: + $$ p(z)=\sum{a_{i}z^{n-i}}. where a_{n} \neq 0,a_{0}=1, a_{i}\subset C $$ -\bibitem [4]{4} Durand, E. (1960), Solution Numerique des Equations -Algebriques, Vol. 1, Equations du Type F(x)=0, Racines d'une -Polynome. Masson, Paris. -\bibitem [4] {4} Aberth, O. (1973), Iterative methods for finding all zeros of -a polynomial simultaneously, Math. Comp. 27, 339-344. +\subsection{Vector $Z^{0)}$ Initialization} -\bibitem [5] {5} Kerner, I.O. (1966), Ein Gesamtschritteverfahren zur -Berechnung der Nullstellen von Polynomen, Numer. Math. 8, 290-294. +The choice of the initial points $z^{(0)}_{i} , i = 1, . . . , n,$ +from which starting the iteration (2) or (3), is rather delicate +since the number of steps needed by the iterative method to reach +a given approximation strongly depends on it. In [1] the Aberth +iteration is started by selecting n equispaced points on a circle +of center 0 and radius r, where r is an upper bound to the moduli +of the zeros. After[18] performs this choice by selecting complex +numbers along different circles and relies on the result of [19]. -\bibitem [6]{6} Borch-Supan, W. (1963), A posteriori error for the zeros of -polynomials, Numer. Math. 5, 380-398. +$$\sigma_{0}=\frac{u+v}{2};u=\frac{\sum_{i=1}^{n}u_{i}}{n.max_{i=1}^{n}u_{i}}; v=\frac{\sum_{i=0}^{n-1}v_{i}}{n.min_{i=0}^{n-1}v_{i}};u_{i}=2.|a_{i}|^{\frac{1}{i}}; v_{i}=\frac{|\frac{a_{n}}{a_{i}}|^{\frac{1}{n-i}}}{2} $$ -\bibitem [7] {7} Ehrlich, L. W. (1967), A modified Newton method for -polynomials, Comm. Ass. Comput. Mach. 10, 107-108. +\subsection{Iterative Function Hi} +The operator used with Aberth's method is corresponding to the +following equation which will enable the convergence towards +polynomial solutions, provided all the roots are distinct. +$$ H_{i}(z)=z_{i}-\frac{1}{\frac{P^{'}(z_{i})}{P(z_{i})}-\sum_{j\neq i}{\frac{1}{z_{i}-z_{j}}}} $$ +\subsection{Convergence condition} +determines the success of the termination. It consists in stopping +the iterative function $H_{i}(z)$ when the are stable,the method +converge sufficiently: +$$ \forall i \in [1,n]; \frac{z_{i}^{(k)}-z_{i}^{(k-1)}}{z_{i}^{(k)}}< \xi$$ -\bibitem [10] {10}Loizon, G. (1983), Higher-order iteration functions for -simultaneously approximating polynomial zeros, Intern. J. Computer -Math. 14, 45-58. +\section{Difficulties and amelioration} +the Aberth method implementation suffer of overflow problems. This +situation occurs, for instance, in the case where a polynomial +having positive coefficients and large degree is computed at a +point $\xi$ where $|\xi| > 1$.Indeed the limited number in the +mantissa of floating takings the computation of P(z) wrong when z +is large. for example $(10^{50}) +1+ (- 10_{50})$ will give result +0 instead of 1 in reality.consequently we can't compute the roots +for large polynomial's degree. This problem was discuss in [17] +for the Durand-Kerner method, the authors propose to use the +logratihm and the exponential of a complex: -\bibitem [11]{11} E. Durand, Solutions num´eriques des ´equations alg´ebriques, -Tome 1: Equations du type F(X) = 0; Racines d’un polynˆome, -Masson, Paris 1960. +$$ \forall(x,y)\in R^{*2}; \ln (x+i.y)=\ln(x^{2}+y^{2}) 2+i.\arcsin(y\sqrt{x^{2}+y^{2}})_{\left] -\pi, \pi\right[ } $$ +$$ \forall(x,y)\in R^{*2}; \exp(x+i.y)= \exp(x).\exp(i.y)$$ +$$ =\exp(x).\cos(y)+i.\exp(x).\sin(y)$$ -\bibitem [12] {12} Weierstrass, K. (1903), Neuer Beweis des Satzes, dass -jede ganze rationale function einer veranderlichen dagestellt -werden kann als ein product aus linearen functionen derselben -veranderlichen, Ges. Werke 3, 251-269. -\bibitem [13] {13} Freeman, T. L. (1989), Calculating polynomial zeros on a -local memory parallel computer, Parallel Computing 12, 351-358. -\bibitem [14] {14} Freeman, T. L., Brankin, R. K. (1990), Asynchronous -polynomial zero-finding algorithms, Parallel Computing 17, -673-681. +The application of logarithm can replace any multiplications and +divisions with additions and subtractions; consequently it +manipulates lower absolute values and can be compute the roots for +large polynomial's degree exceed 1000[17]. -\bibitem [15] {15} Raphaël,C. François,S. (2001), Extraction de racines dans des -polynômes creux de degré élevé. RSRCP (Réseaux et Systèmes -Répartis, Calculateurs Parallèles), Numéro thématique : -Algorithmes itératifs parallèles et distribués, 13(1):67--81. +Applying this solution for the Aberth method we obtain the +iteration function with logarithm: +%%$$ \exp \bigl( \ln(p(z)_{k})-ln(\ln(p(z)_{k}^{'}))- \ln(1- \exp(\ln(p(z)_{k})-ln(\ln(p(z)_{k}^{'})+\ln\sum_{i\neq j}^{n}\frac{1}{z_{k}-z_{j}})$$ -\bibitem [16]{16} Kahina, G. Raphaël, C. Abderrahmane, S. A -parallel implementation of the Durand-Kerner algorithm for -polynomial root-finding on GPU. In INDS 2014, Int. Conf. on -advanced Networking, Distributed Systems and Applications, Bejaia, -Algeria, pages 53--57, June 2014. IEEE +$$ H_{i}(z)=z_{i}^{k}-\exp \left(\ln \left( p(z_{k})\right)-\ln\left(p(z_{k}^{'})\right)- \ln\left(1- \exp\left( \ln (p(z_{k}))-\ln(p(z_{k}^{'}))+\ln \left( \sum_{k\neq j}^{n}\frac{1}{z_{k}-z_{j}}\right)\right) \right) \right)$$ -\end{thebibliography} + + +this solution is applying when it is necessary + +\section{The implementation of simultaneous methods in a parallel computer} + + +\bibliographystyle{plain} +\bibliography{biblio} +%% \begin{thebibliography}{2} + +%% \bibitem [1] {1} O. Aberth, Iteration Methods for Finding + + +%% all Zeros of a Polynomial Simultaneously, Math. Comput. 27, 122 +%% (1973) 339–344. + +%% \bibitem [2] {2} Ilieff, L. (1948-50), On the approximations of Newton, Annual +%% Sofia Univ. 46, 167-171. + +%% \bibitem [3] {3} Docev, K. (1962), An alternative method of Newton for +%% simultaneous calculation of all the roots of a given algebraic +%% equation, Phys. Math. J., Bulg. Acad. Sci. 5, 136-139. + +%% \bibitem [4]{4} Durand, E. (1960), Solution Numerique des Equations +%% Algebriques, Vol. 1, Equations du Type F(x)=0, Racines d'une +%% Polynome. Masson, Paris. + +%% \bibitem [4] {4} Aberth, O. (1973), Iterative methods for finding all zeros of +%% a polynomial simultaneously, Math. Comp. 27, 339-344. + +%% \bibitem [5] {5} Kerner, I.O. (1966), Ein Gesamtschritteverfahren zur +%% Berechnung der Nullstellen von Polynomen, Numer. Math. 8, 290-294. + +%% \bibitem [6]{6} Borch-Supan, W. (1963), A posteriori error for the zeros of +%% polynomials, Numer. Math. 5, 380-398. + +%% \bibitem [7] {7} Ehrlich, L. W. (1967), A modified Newton method for +%% polynomials, Comm. Ass. Comput. Mach. 10, 107-108. + + + +%% \bibitem [10] {10}Loizon, G. (1983), Higher-order iteration functions for +%% simultaneously approximating polynomial zeros, Intern. J. Computer +%% Math. 14, 45-58. + +%% \bibitem [11]{11} E. Durand, Solutions numŽeriques des Žequations algŽebriques, +%% Tome 1: Equations du type F(X) = 0; Racines d’un polynˆome, +%% Masson, Paris 1960. + +%% \bibitem [12] {12} Weierstrass, K. (1903), Neuer Beweis des Satzes, dass +%% jede ganze rationale function einer veranderlichen dagestellt +%% werden kann als ein product aus linearen functionen derselben +%% veranderlichen, Ges. Werke 3, 251-269. +%% \bibitem [13] {13} Freeman, T. L. (1989), Calculating polynomial zeros on a +%% local memory parallel computer, Parallel Computing 12, 351-358. + +%% \bibitem [14] {14} Freeman, T. L., Brankin, R. K. (1990), Asynchronous +%% polynomial zero-finding algorithms, Parallel Computing 17, +%% 673-681. + +%% \bibitem [15] {15} Raphaël,C. François,S. (2001), Extraction de racines dans des +%% polynômes creux de degré élevé. RSRCP (Réseaux et Systèmes +%% Répartis, Calculateurs Parallèles), Numéro thématique : +%% Algorithmes itératifs parallèles et distribués, 13(1):67--81. + +%% \bibitem [16]{16} Kahina, G. Raphaël, C. Abderrahmane, S. A +%% parallel implementation of the Durand-Kerner algorithm for +%% polynomial root-finding on GPU. In INDS 2014, Int. Conf. on +%% advanced Networking, Distributed Systems and Applications, Bejaia, +%% Algeria, pages 53--57, June 2014. IEEE + +%% \bibitem [17] {17} Karim Rhofir, François Spies, and Jean-Claude Miellou. +%%Perfectionnements de la méthode asynchrone de Durand-Kerner pour +%%les polynômes complexes. Calculateurs Parallèles, 10(4):449-- 458, +%%1998. +%% \bibitem [18] {18} Bini, D. A. Numerical computation of polynomial zeros by +%%means of Aberth’s method. Numerical Algorithms 13 (1996), 179– +%%200. +%% \bibitem [19] {19} A. Ostrowski, On a Theorem by J.L. Walsh Concerning the Moduli of Roots of Algebraic Equations, +%%Bull. A.M.S., 47 (1941) 742–746. +%% \end{thebibliography} \end{document}