X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/kahina_paper1.git/blobdiff_plain/dc93483689b3327eada2eb44f000c8c0d40753c7..78be06acc12fcd57616e8c197a6793c4467be9d3:/paper.tex?ds=sidebyside diff --git a/paper.tex b/paper.tex index 44f01e2..93e111a 100644 --- a/paper.tex +++ b/paper.tex @@ -9,6 +9,15 @@ \usepackage[ruled,vlined]{algorithm2e} %\usepackage[french,boxed,linesnumbered]{algorithm2e} \usepackage{array,multirow,makecell} + +\newcommand{\RC}[2][inline]{% + \todo[color=blue!10,#1]{\sffamily\textbf{RC:} #2}\xspace} +\newcommand{\KG}[2][inline]{% + \todo[color=green!10,#1]{\sffamily\textbf{KG:} #2}\xspace} +\newcommand{\AS}[2][inline]{% + \todo[color=orange!10,#1]{\sffamily\textbf{AS:} #2}\xspace} + + \setcellgapes{1pt} \makegapedcells \newcolumntype{R}[1]{>{\raggedleft\arraybackslash }b{#1}} @@ -16,6 +25,8 @@ \newcolumntype{C}[1]{>{\centering\arraybackslash }b{#1}} \modulolinenumbers[5] + + \journal{Journal of \LaTeX\ Templates} %%%%%%%%%%%%%%%%%%%%%%% @@ -88,7 +99,7 @@ the results of a parallel implementation of the Ehrlich-Aberth algorithm for the root finding problem for high degree polynomials on GPU architectures. The main result of this work is to be able to solve high degree polynomials (up -to 1,000,000) very efficiently. We also compare the results with a +to 1,000,000) efficiently. We also compare the results with a sequential implementation and the Durand-Kerner method on full and sparse polynomials. \end{abstract}