X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/kahina_paper1.git/blobdiff_plain/e48d60147ff49ec4df9948967e6f8ef7c85202e9..6d752aa17f545c7787a662137e94c70b21c2f653:/paper.tex?ds=inline diff --git a/paper.tex b/paper.tex index 24a86ca..104bcbe 100644 --- a/paper.tex +++ b/paper.tex @@ -552,9 +552,9 @@ $kernel\_testConverge(\Delta z_{max},d_z^{k},d_z^{k-1})$\; \end{algorithm} ~\\ -After the initialisation step, all data of the root finding problem to be solved must be copied from the CPU memory to the GPU global memory, because the GPUs only access data already present in their memories. Next, all the data-parallel arithmetic operations inside the main loop \verb=(do ... while(...))= are executed as kernels by the GPU. The first kernel \textit{save} in line 6 of Algorithm~\ref{alg2-cuda} consists in saving the vector of polynomial's root found at the previous time-step in GPU memory, in order to check the convergence of the roots after each iteration (line 8, Algorithm~\ref{alg2-cuda}). +After the initialisation step, all data of the root finding problem to be solved must be copied from the CPU memory to the GPU global memory, because the GPUs only access data already present in their memories. Next, all the data-parallel arithmetic operations inside the main loop \verb=(do ... while(...))= are executed as kernels by the GPU. The first kernel named \textit{save} in line 6 of Algorithm~\ref{alg2-cuda} consists in saving the vector of polynomial's root found at the previous time-step in GPU memory, in order to check the convergence of the roots after each iteration (line 8, Algorithm~\ref{alg2-cuda}). -The second kernel executes the iterative function $H$ and updates $z^{k}$, according to Algorithm~\ref{alg3-update}. We notice that the update kernel is called in two forms, separated with thevalue of \emph{R} which determines the radius beyond which we apply the logarithm computation of the power of a complex. +The second kernel executes the iterative function $H$ and updates $z^{k}$, according to Algorithm~\ref{alg3-update}. We notice that the update kernel is called in two forms, separated with the value of \emph{R} which determines the radius beyond which we apply the logarithm computation of the power of a complex. \begin{algorithm}[H] \label{alg3-update} @@ -568,14 +568,15 @@ $kernel\_update\_Log(d\_z^{k})$\; } \end{algorithm} -The first form execute the formula (8) if the modulus is of the current complex is less than the radius i.e. ($ |z^{k}_{i}|<= R$), else the kernel executes the formulas (13,14).the radius R was computed like: +The first form executes the formula (8) if the modulus is of the current complex is less than the radius i.e. ($ |z^{k}_{i}|<= R$), else the kernel executes formulas (13,14). The radius R is evaluated as : -$$R = \exp( \log(DBL\_MAX) / (2*n) )$$ +$$R = \exp( \log(DBL\_MAX) / (2*n) )$$ where $DBL\_MAX$ stands for the maximum representable double value. -The last kernel verify the convergence of the root after each update of $Z^{(k)}$, as formula(), we used the function of the CUBLAS Library (CUDA Basic Linear Algebra Subroutines) to implement this kernel. +The last kernel verifies the convergence of the roots after each update of $Z^{(k)}$, according to formula. We used the functions of the CUBLAS Library (CUDA Basic Linear Algebra Subroutines) to implement this kernel. -The kernels terminates its computations when all the root are converged. Finally, the solution of the root finding problem is copied back from the GPU global memory to the CPU memory. We use the communication functions of CUDA for the memory allocations in the GPU \verb=(cudaMalloc())= and the data transfers from the CPU memory to the GPU memory \verb=(cudaMemcpyHostToDevice)= +The kernels terminates it computations when all the root are converged. Finally, the solution of the root finding problem is copied back from the GPU global memory to the CPU memory. We use the communication functions of CUDA for the memory allocations in the GPU \verb=(cudaMalloc())= and the data transfers from the CPU memory to the GPU memory \verb=(cudaMemcpyHostToDevice)= or from the GPU memory to the CPU memory \verb=(cudaMemcpyDeviceToHost))=. +%%HIER END MY REVISIONS (SIDER) \subsection{Experimental study} \subsubsection{Definition of the polynomial used}