]> AND Private Git Repository - kahina_paper1.git/commitdiff
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
new
authorcouturie <couturie@extinction>
Mon, 2 Nov 2015 19:13:41 +0000 (14:13 -0500)
committercouturie <couturie@extinction>
Mon, 2 Nov 2015 19:13:41 +0000 (14:13 -0500)
paper.tex

index e4873d7ec44c54e61e7fb19a3eb55ae7be6c6348..cf8c1800f2a6e410e16d9a3bcb95ba580ac548f4 100644 (file)
--- a/paper.tex
+++ b/paper.tex
@@ -423,13 +423,15 @@ In~\cite{Kahinall14} we already proposed the first implementation
 of a root finding method on GPUs, that of the Durand-Kerner method. The main result showed
 that a parallel CUDA implementation is 10 times as fast as the
 sequential implementation on a single CPU for high degree
 of a root finding method on GPUs, that of the Durand-Kerner method. The main result showed
 that a parallel CUDA implementation is 10 times as fast as the
 sequential implementation on a single CPU for high degree
-polynomials of 48000. In this paper we present a parallel implementation of Ehlisch-Aberth method on
-GPUs, which details are discussed in the sequel.
+polynomials of 48000.
+%In this paper we present a parallel implementation of Ehrlich-Aberth
+%method on GPUs for sparse and full polynomials with high degree (up
+%to $1,000,000$).
 
 
 \section {A CUDA parallel Ehrlich-Aberth method}
 In the following, we describe the parallel implementation of Ehrlich-Aberth method on GPU 
 
 
 \section {A CUDA parallel Ehrlich-Aberth method}
 In the following, we describe the parallel implementation of Ehrlich-Aberth method on GPU 
-for solving high degree polynomials. First, the hardware and software of the GPUs are presented. Then, a CUDA parallel Ehrlich-Aberth method are presented.
+for solving high degree polynomials (up to $1,000,000$). First, the hardware and software of the GPUs are presented. Then, the CUDA parallel Ehrlich-Aberth method is presented.
 
 \subsection{Background on the GPU architecture}
 A GPU is viewed as an accelerator for the data-parallel and
 
 \subsection{Background on the GPU architecture}
 A GPU is viewed as an accelerator for the data-parallel and