summary |
shortlog |
log |
commit | commitdiff |
tree
raw |
patch |
inline | side by side (from parent 1:
a159557)
1: sans mettre l'axe x & y en log
2: l'axe x & y en log (set logscale x, set logscale y)
moi je prefere la 2, vous commentaire....?
#set format x "%6.4e"
set format x "%2.0e"
#set format x "%2.0t{/Symbol \327}10^{%L}"
#set format x "%6.4e"
set format x "%2.0e"
#set format x "%2.0t{/Symbol \327}10^{%L}"
-#set logscale x
-#set logscale y
+set logscale x
+set logscale y
#set key on outside left bmargin
#set key on outside left bmargin
-set style line 1 lc rgb '#0060ad' lt 1 lw 2 pt 1 ps 1.5 # --- blue
-set style line 3 lc rgb '#dd181f' lt 1 lw 2 pt 3 ps 1.5 # --- red
-set style line 2 lc rgb '#dd181f' lt 1 lw 2 pt 4 ps 1.5 # --- red
-set style line 4 lc rgb '#dd181f' lt 1 lw 2 pt 6 ps 1.5 # --- red
+set style line 1 lc rgb '#000c16' lt 1 lw 2 pt 4 ps 1.5 # --- blue
+set style line 2 lc rgb '#000c16' lt 1 lw 2 pt 5 ps 1.5 # --- red
+set style line 3 lc rgb '#000c16' lt 1 lw 2 pt 6 ps 1.5 # --- red
+set style line 4 lc rgb '#000c16' lt 1 lw 2 pt 7 ps 1.5 # --- red
-set style line 2 lc rgb '#dd181f' lt 1 lw 2 pt 5 ps 1.5 # --- red
+set style line 2 lc rgb '#000c16' lt 1 lw 2 pt 5 ps 1.5 # --- red
plot 'EA_DK.txt'index 0 using 1:2 t "EA with sparse polynomials" with linespoints ls 1,\
'EA_DK.txt'index 0 using 1:4 t "EA with full polynomials" with linespoints ls 2,\
'EA_DK.txt'index 1 using 1:2 t "DK with sparse polynomials" with linespoints ls 3,\
plot 'EA_DK.txt'index 0 using 1:2 t "EA with sparse polynomials" with linespoints ls 1,\
'EA_DK.txt'index 0 using 1:4 t "EA with full polynomials" with linespoints ls 2,\
'EA_DK.txt'index 1 using 1:2 t "DK with sparse polynomials" with linespoints ls 3,\
# First data block (index 0)
#EA sparse full
#Taille_Poly times nb iter times nb iter
# First data block (index 0)
#EA sparse full
#Taille_Poly times nb iter times nb iter
+500 0.179359 13 0.232027 16
+1000 0.162205 11 0.309663 21
+3000 0.192672 12 0.313993 15
5000 0.40 17 0.748784 25
50000 3.92 17 25.9504 40
100000 12.45 16 54.5215 30
5000 0.40 17 0.748784 25
50000 3.92 17 25.9504 40
100000 12.45 16 54.5215 30
#DK sparse full
times nb iter times nb iter
#DK sparse full
times nb iter times nb iter
+500 0.666998 57 15.7343 1379 3.0441 232
+1000 1.62935 128 31.9188 1822
+3000 5.32778 270 59.6391 1538
5000 3.42 138 622.617 9483
5000 3.42 138 622.617 9483
100000 447.364 408
150000 1524.08 552
200000 1530.86 360
100000 447.364 408
150000 1524.08 552
200000 1530.86 360
\label{fig:04}
\end{figure}
\label{fig:04}
\end{figure}
+\begin{figure}[htbp]
+\centering
+ \includegraphics[width=0.8\textwidth]{figures/EA_DK1}
+\caption{Execution times of the Durand-Kerner and the Ehrlich-Aberth methods on GPU}
+\label{fig:0}
+\end{figure}
+
Figure~\ref{fig:04} shows the execution times of both methods with
sparse polynomial degrees ranging from 1,000 to 1,000,000. We can see
that the Ehrlich-Aberth algorithm is faster than Durand-Kerner
Figure~\ref{fig:04} shows the execution times of both methods with
sparse polynomial degrees ranging from 1,000 to 1,000,000. We can see
that the Ehrlich-Aberth algorithm is faster than Durand-Kerner