From: Kahina Date: Tue, 27 Oct 2015 08:57:18 +0000 (+0100) Subject: Ajout de la figure Spare and full polynomial with or no Log.exp X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/kahina_paper1.git/commitdiff_plain/0f0f3e13155ce0a172b0325568594615b632eb61 Ajout de la figure Spare and full polynomial with or no Log.exp --- diff --git a/figures/sparse_full_explog.pdf b/figures/sparse_full_explog.pdf new file mode 100644 index 0000000..7100f34 Binary files /dev/null and b/figures/sparse_full_explog.pdf differ diff --git a/figures/sparse_full_explog.plot b/figures/sparse_full_explog.plot new file mode 100644 index 0000000..72242e8 --- /dev/null +++ b/figures/sparse_full_explog.plot @@ -0,0 +1,21 @@ +# Analysis description +set encoding iso_8859_1 +set terminal x11 +set size 1,0.5 +set term postscript enhanced portrait "Helvetica" 12 + +set ylabel "execution times (in s)" +set xlabel "Sparse and full polynomial's degrees" +set logscale x +set logscale y + +#set key on outside left bmargin +set style line 1 lc rgb '#0060ad' lt 1 lw 2 pt 1 ps 1.5 # --- blue +set style line 2 lc rgb '#dd181f' lt 1 lw 2 pt 5 ps 1.5 # --- red + + plot'log_exp_Sparse.txt' index 0 using 1:4 t "Sparse polynomial No log.exp" with linespoints ls 2,\ + 'log_exp_Sparse.txt' index 0 using 1:2 t "Sparse polynomial with log.exp" with linespoints ls 1,\ + 'log_exp_Sparse.txt' index 1 using 1:2 t "Sparse polynomial with log.exp" with linespoints ls 1,\ +'log_exp.txt' index 0 using 1:4 t "Full polynomial No log.exp" with linespoints ls 2,\ + 'log_exp.txt' index 0 using 1:2 t "Full polynomial with log.exp" with linespoints ls 1,\ + 'log_exp.txt'index 1 using 1:2 t "Full polynomail withlog.exp" with linespoints ls 1 \ No newline at end of file diff --git a/figures/sparse_full_explog.txt b/figures/sparse_full_explog.txt new file mode 100644 index 0000000..065de24 --- /dev/null +++ b/figures/sparse_full_explog.txt @@ -0,0 +1,59 @@ +#sparse polynomial +# First data block (index 0) +#EA With_log_exp No_log_exp +#Taille_Poly times nb iter times nb iter +5000 0.289431 17 0.256983 15 +10000 0.319229 14 0.317802 14 +15000 0.317802 14 0.393191 13 +25000 0.759156 11 0.849403 11 +30000 1.26306 16 2.08251 20 +40000 2.57116 19 2.58756 18 +50000 4.17865 18 4.80419 20 +60000 4.43633 16 4.92617 17 +100000 11.7038 15 12.4761 16 +150000 18.6746 11 16.3098 16 + +# Second index block (index 1) +#Taille_Poly times nb iter +150000 18.6746 11 +200000 67.6199 22 +300000 132.27 20 +350000 159.65 18 +400000 258.91 22 +450000 339.47 23 +500000 419.78 23 +550000 415.94 19 +600000 549.70 21 +650000 612.12 20 +700000 864.21 24 +750000 940.87 23 +800000 1247.16 26 +850000 1702.12 32 +900000 1803.17 30 +950000 2280.07 34 +1000000 2400.51 30 + +#Full polynomial +# First data block (index 2) +#EA With_log_exp No_log_exp +#Taille_Poly times nb iter times nb iter +500 0.224633 16 0.23799 17 +1000 0.348493 24 0.36104 24 +1500 0.337472 21 0.339825 20 +2000 0.36503 21 0.389243 21 +2500 0.389436 22 0.438976 27 +3000 0.404811 20 0.403387 27 +3500 0.487981 21 0.490296 22 +4000 0.506183 23 0.550917 20 + +# Second index block (index 3) +#EA With_log_exp +#Taille_Poly times nb iter +4000 0.506183 23 +#4500 0.946749 23 +5000 0.769945 33 +6000 1.38447 48 +10000 2.15026 32 +100000 306.117 141 + + diff --git a/paper.tex b/paper.tex index c12aeda..1ba7a17 100644 --- a/paper.tex +++ b/paper.tex @@ -662,7 +662,7 @@ The figure 2 show that, the best execution time for both sparse and full polynom In this experiment we report the performance of log.exp solution describe in ~\ref{sec2} to compute very high degrees polynomials. \begin{figure}[H] \centering - \includegraphics[width=0.8\textwidth]{figures/log_exp} + \includegraphics[width=0.8\textwidth]{figures/sparse_full_explog} \caption{The impact of exp-log solution to compute very high degrees of polynomial.} \label{fig:01} \end{figure} @@ -672,12 +672,12 @@ The figure 3, show a comparison between the execution time of the Ehrlich-Aberth in fact, when the modulus of the roots are up than \textit{R} given in ~\ref{R},this exceed the limited number in the mantissa of floating points representations and can not compute the iterative function given in ~\ref{eq:Aberth-H-GS} to obtain the root solution, who justify the divergence of the classical Ehrlich-Aberth algorithm. However, applying log.exp solution given in ~\ref{sec2} took into account the limit of floating using the iterative function in(Eq.~\ref{Log_H1},Eq.~\ref{Log_H2}and allows to solve a very large polynomials degrees . -\begin{figure}[H] -\centering - \includegraphics[width=0.8\textwidth]{figures/log_exp_Sparse} -\caption{The impact of exp-log solution to compute very high degrees of polynomial.} -\label{fig:01} -\end{figure} +%\begin{figure}[H] +\%centering + %\includegraphics[width=0.8\textwidth]{figures/log_exp_Sparse} +%\caption{The impact of exp-log solution to compute very high degrees of polynomial.} +%\label{fig:01} +%\end{figure} %we report the performances of the exp.log for the Ehrlich-Aberth algorithm for solving very high degree of polynomial.