From: Kahina <kahina@kahina-VPCEH3K1E.(none)>
Date: Tue, 27 Oct 2015 08:57:18 +0000 (+0100)
Subject: Ajout de la figure Spare and full polynomial with or no Log.exp
X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/kahina_paper1.git/commitdiff_plain/0f0f3e13155ce0a172b0325568594615b632eb61

Ajout de la figure Spare and full polynomial with or no Log.exp
---

diff --git a/figures/sparse_full_explog.pdf b/figures/sparse_full_explog.pdf
new file mode 100644
index 0000000..7100f34
Binary files /dev/null and b/figures/sparse_full_explog.pdf differ
diff --git a/figures/sparse_full_explog.plot b/figures/sparse_full_explog.plot
new file mode 100644
index 0000000..72242e8
--- /dev/null
+++ b/figures/sparse_full_explog.plot
@@ -0,0 +1,21 @@
+# Analysis description 
+set encoding iso_8859_1
+set terminal x11
+set size 1,0.5
+set term postscript enhanced portrait "Helvetica" 12
+
+set ylabel "execution times (in s)" 
+set xlabel "Sparse and full polynomial's degrees" 
+set logscale x
+set logscale y
+
+#set key on outside left bmargin
+set style line 1 lc rgb '#0060ad' lt 1 lw 2 pt 1 ps 1.5   # --- blue
+set style line 2 lc rgb '#dd181f' lt 1 lw 2 pt 5 ps 1.5   # --- red
+
+  plot'log_exp_Sparse.txt' index 0 using 1:4 t "Sparse polynomial No log.exp"       with linespoints ls 2,\
+ 'log_exp_Sparse.txt' index 0 using 1:2 t "Sparse polynomial with log.exp"      with linespoints ls 1,\
+ 'log_exp_Sparse.txt' index 1 using 1:2 t "Sparse polynomial with log.exp"      with linespoints ls 1,\
+'log_exp.txt' index 0 using 1:4 t "Full polynomial No log.exp"       with linespoints ls 2,\
+ 'log_exp.txt' index 0 using 1:2 t "Full polynomial with log.exp"     	   with linespoints ls 1,\
+ 'log_exp.txt'index 1 using 1:2 t "Full polynomail withlog.exp"      	   with linespoints ls 1
\ No newline at end of file
diff --git a/figures/sparse_full_explog.txt b/figures/sparse_full_explog.txt
new file mode 100644
index 0000000..065de24
--- /dev/null
+++ b/figures/sparse_full_explog.txt
@@ -0,0 +1,59 @@
+#sparse polynomial
+# First data block (index 0)
+#EA		With_log_exp			No_log_exp			   			
+#Taille_Poly	times		nb iter		times		nb iter				
+5000		0.289431	17 		0.256983	15
+10000		0.319229	14		0.317802	14
+15000		0.317802	14		0.393191 	13
+25000		0.759156	11		0.849403	11
+30000		1.26306		16		2.08251		20		
+40000		2.57116		19		2.58756		18
+50000		4.17865		18		4.80419		20
+60000		4.43633		16		4.92617		17
+100000		11.7038 	15		12.4761		16
+150000		18.6746		11		16.3098 	16
+
+# Second index block (index 1)
+#Taille_Poly	times		nb iter
+150000		18.6746		11				
+200000		67.6199		22
+300000		132.27		20
+350000		159.65		18				
+400000		258.91		22 					
+450000		339.47		23		
+500000		419.78		23
+550000		415.94		19
+600000		549.70		21
+650000		612.12		20
+700000		864.21		24
+750000		940.87		23
+800000		1247.16		26
+850000		1702.12		32
+900000		1803.17		30
+950000		2280.07		34
+1000000		2400.51		30
+
+#Full polynomial
+# First data block (index 2)
+#EA		With_log_exp				No_log_exp			   			
+#Taille_Poly	times		nb iter		times		nb iter				
+500		0.224633	16 		0.23799		17   		
+1000		0.348493 	24		0.36104		24			
+1500            0.337472 	21		0.339825	20			
+2000		0.36503 	21		0.389243	21			
+2500		0.389436 	22		0.438976	27			
+3000		0.404811	20		0.403387	27			
+3500		0.487981	21		0.490296	22			
+4000		0.506183	23 		0.550917	20
+
+# Second index block (index 3)
+#EA		With_log_exp
+#Taille_Poly	times		nb iter
+4000		0.506183	23				
+#4500		0.946749	23
+5000		0.769945	33
+6000		1.38447		48
+10000		2.15026 	32
+100000		306.117		141
+
+
diff --git a/paper.tex b/paper.tex
index c12aeda..1ba7a17 100644
--- a/paper.tex
+++ b/paper.tex
@@ -662,7 +662,7 @@ The figure 2 show that, the best execution time for both sparse and full polynom
 In this experiment we report the performance of log.exp solution describe in ~\ref{sec2} to compute very high degrees polynomials.   
 \begin{figure}[H]
 \centering
-  \includegraphics[width=0.8\textwidth]{figures/log_exp}
+  \includegraphics[width=0.8\textwidth]{figures/sparse_full_explog}
 \caption{The impact of exp-log solution to compute very high degrees of  polynomial.}
 \label{fig:01}
 \end{figure}
@@ -672,12 +672,12 @@ The figure 3, show a comparison between the execution time of the Ehrlich-Aberth
 in fact, when the modulus of the roots are up than \textit{R} given in ~\ref{R},this exceed the limited number in the mantissa of floating points representations and can not compute the iterative function given in ~\ref{eq:Aberth-H-GS} to obtain the root solution, who justify the divergence of the classical Ehrlich-Aberth algorithm. However, applying log.exp solution given in ~\ref{sec2} took into account the limit of floating using the iterative function in(Eq.~\ref{Log_H1},Eq.~\ref{Log_H2}and allows to solve a very large polynomials degrees . 
 
 
-\begin{figure}[H]
-\centering
-  \includegraphics[width=0.8\textwidth]{figures/log_exp_Sparse}
-\caption{The impact of exp-log solution to compute very high degrees of  polynomial.}
-\label{fig:01}
-\end{figure}
+%\begin{figure}[H]
+\%centering
+  %\includegraphics[width=0.8\textwidth]{figures/log_exp_Sparse}
+%\caption{The impact of exp-log solution to compute very high degrees of  polynomial.}
+%\label{fig:01}
+%\end{figure}
 
 %we report the performances of the exp.log for the Ehrlich-Aberth algorithm for solving very high degree of polynomial.