From: couturie Date: Thu, 5 Nov 2015 15:44:14 +0000 (-0500) Subject: new X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/kahina_paper1.git/commitdiff_plain/365ac29c1fc7a4a90a993cfe892d6153beb8a460?ds=inline new --- diff --git a/paper.tex b/paper.tex index 2b6ac7f..00d805d 100644 --- a/paper.tex +++ b/paper.tex @@ -711,13 +711,33 @@ of the methods are given in Section~\ref{sec:vec_initialization}. on a CPU with OpenMP (1 core, 4 cores) and on a Tesla GPU} \label{fig:01} \end{figure} -%%Figure 1 %%show a comparison of execution time between the parallel and sequential version of the Ehrlich-Aberth algorithm with sparse polynomial exceed 100000, -In Figure~\ref{fig:01}, we report respectively the execution time of the Ehrlich-Aberth method implemented initially on one core of the Quad-Core Xeon E5620 CPU than on four cores of the same machine with \textit{OpenMP} platform and the execution time of the same method implemented on one Nvidia Tesla K40c GPU, with sparse polynomial degrees ranging from 100,000 to 1,000,000. We can see that the method implemented on the GPU are faster than those implemented on the CPU (4 cores). This is due to the GPU ability to compute the data-parallel functions faster than its CPU counterpart. However, the execution time for the CPU(4 cores) implementation exceed 5,000 s for 250,000 degrees polynomials, in counterpart the GPU implementation for the same polynomials not reach 100 s, more than again, with an execution time under to 2,500 s CPU (4 cores) implementation can resolve polynomials degrees of only 200,000, whereas GPU implementation can resolve polynomials more than 1,000,000 degrees. We can also notice that the GPU implementation are almost 47 faster then those implementation on the CPU(4 cores). However the CPU(4 cores) implementation are almost 4 faster then his implementation on CPU (1 core). Furthermore, we verify that the number of iterations and the convergence precision is the same for the both CPU and GPU implementation. %This reduction of time allows us to compute roots of polynomial of more important degree at the same time than with a CPU. +%%Figure 1 %%show a comparison of execution time between the parallel +%%and sequential version of the Ehrlich-Aberth algorithm with sparse +%%polynomial exceed 100000, + +In Figure~\ref{fig:01}, we report the execution times of the +Ehrlich-Aberth method on one core of a Quad-Core Xeon E5620 CPU, on +four cores on the same machine with \textit{OpenMP} and on a Nvidia +Tesla K40c GPU. We chose different sparse polynomials with degrees +ranging from 100,000 to 1,000,000. We can see that the implementation +on the GPU is faster than those implemented on the CPU. +However, the execution time for the +CPU (4 cores) implementation exceed 5,000s for 250,000 degrees +polynomials. In counterpart, the GPU implementation for the same +polynomials do not take more 100s. With the GPU +we can solve high degrees polynomials very quickly up to degree + of 1,000,000. We can also notice that the GPU implementation are + almost 40 faster then those implementation on the CPU (4 cores). + + + + +%This reduction of time allows us to compute roots of polynomial of more important degree at the same time than with a CPU. %We notice that the convergence precision is a round $10^{-7}$ for the both implementation on CPU and GPU. Consequently, we can conclude that Ehrlich-Aberth on GPU are faster and accurately then CPU implementation. \subsection{Influence of the number of threads on the execution times of different polynomials (sparse and full)} -To optimize the performances of an algorithm on a GPU, it is necessary to maximize the use of cores GPU (maximize the number of threads executed in parallel) and to optimize the use of the various memoirs GPU. In fact, it is interesting to see the influence of the number of threads per block on the execution time of Ehrlich-Aberth algorithm. +To optimize the performances of an algorithm on a GPU, it is necessary to maximize the use of cores GPU (maximize the number of threads executed in parallel). In fact, it is interesting to see the influence of the number of threads per block on the execution time of Ehrlich-Aberth algorithm. For that, we notice that the maximum number of threads per block for the Nvidia Tesla K40 GPU is 1,024, so we varied the number of threads per block from 8 to 1,024. We took into account the execution time for both sparse and full of 10 different polynomials of size 50,000 and 10 different polynomials of size 500,000 degrees. \begin{figure}[htbp]