From: couturie Date: Mon, 2 Nov 2015 16:09:31 +0000 (-0500) Subject: new X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/kahina_paper1.git/commitdiff_plain/5771bd90bdc89ce5ca4a1947aca277e3101ea508?hp=-c new --- 5771bd90bdc89ce5ca4a1947aca277e3101ea508 diff --git a/paper.tex b/paper.tex index 276c50a..c4fa445 100644 --- a/paper.tex +++ b/paper.tex @@ -348,7 +348,7 @@ Using the logarithm (eq.~\ref{deflncomplex}) and the exponential (eq.~\ref{defex manipulate lower absolute values and the roots for large polynomial's degrees can be looked for successfully~\cite{Karimall98}. Applying this solution for the Ehrlich-Aberth method we obtain the -iteration function with logarithm: +iteration function with exponential and logarithm: %%$$ \exp \bigl( \ln(p(z)_{k})-ln(\ln(p(z)_{k}^{'}))- \ln(1- \exp(\ln(p(z)_{k})-ln(\ln(p(z)_{k}^{'})+\ln\sum_{i\neq j}^{n}\frac{1}{z_{k}-z_{j}})$$ \begin{equation} \label{Log_H2}