From: Kahina <kahina@kahina-VPCEH3K1E.(none)>
Date: Thu, 5 Nov 2015 09:34:18 +0000 (+0100)
Subject: new
X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/kahina_paper1.git/commitdiff_plain/636c3a5433074f7cb112765bbe6183b0237a67b8

new
---

diff --git a/mybibfile.bib b/mybibfile.bib
index 47cab48..5177fd8 100644
--- a/mybibfile.bib
+++ b/mybibfile.bib
@@ -165,7 +165,7 @@ OPTannote = {•}
 }
 
 @Article{Kahinall14,
-  title =   "Parallel implementation of the Durand-Kerner algorithm for polynomial root-finding on GPU",
+  title =   "Parallel implementation of the {D}urand-{K}erner algorithm for polynomial root-finding on GPU",
   journal = "IEEE. Conf. on advanced Networking, Distributed Systems and Applications",
   volume =  "",
   number =  "",
diff --git a/paper.tex b/paper.tex
index 1d70450..2b6ac7f 100644
--- a/paper.tex
+++ b/paper.tex
@@ -350,7 +350,7 @@ iteration function with exponential and logarithm:
 %%$$ \exp \bigl(  \ln(p(z)_{k})-ln(\ln(p(z)_{k}^{'}))- \ln(1- \exp(\ln(p(z)_{k})-ln(\ln(p(z)_{k}^{'})+\ln\sum_{i\neq j}^{n}\frac{1}{z_{k}-z_{j}})$$
 \begin{equation}
 \label{Log_H2}
-EA.EL: z^{k+1}=z_{i}^{k}-\exp \left(\ln \left(
+EA.EL: z^{k+1}_{i}=z_{i}^{k}-\exp \left(\ln \left(
 p(z_{i}^{k})\right)-\ln\left(p'(z^{k}_{i})\right)- \ln
 \left(1-Q(z^{k}_{i})\right)\right),
 \end{equation}
@@ -360,7 +360,7 @@ where:
 \begin{equation}
 \label{Log_H1}
 Q(z^{k}_{i})=\exp\left( \ln (p(z^{k}_{i}))-\ln(p'(z^{k}_{i}))+\ln \left(
-\sum_{k\neq j}^{n}\frac{1}{z^{k}_{i}-z^{k}_{j}}\right)\right).
+\sum_{i\neq j}^{n}\frac{1}{z^{k}_{i}-z^{k}_{j}}\right)\right)i=1,...,n,
 \end{equation}
 
 This solution is applied when the root except the circle unit, represented by the radius $R$ evaluated in C language as: