From: Kahina Date: Fri, 23 Oct 2015 09:18:24 +0000 (+0200) Subject: MAJ des figures 1,2,3 X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/kahina_paper1.git/commitdiff_plain/cfd82bbfb39a9364876ec4ae2e03ec4877c7cda1?hp=--cc MAJ des figures 1,2,3 une nouvelle figure 4 non terminer à causes des tests --- cfd82bbfb39a9364876ec4ae2e03ec4877c7cda1 diff --git a/figures/EA_DK.pdf b/figures/EA_DK.pdf new file mode 100644 index 0000000..732fb08 Binary files /dev/null and b/figures/EA_DK.pdf differ diff --git a/figures/EA_DK.plot b/figures/EA_DK.plot new file mode 100644 index 0000000..31436ba --- /dev/null +++ b/figures/EA_DK.plot @@ -0,0 +1,21 @@ +# Analysis description +set encoding iso_8859_1 +set terminal x11 +set size 1,0.5 +set term postscript enhanced portrait "Helvetica" 12 + +set ylabel "execution times (in s)" +set xlabel "polynomial's degree" +set logscale x +set logscale y + +#set key on outside left bmargin +set style line 1 lc rgb '#0060ad' lt 1 lw 2 pt 1 ps 1.5 # --- blue +set style line 3 lc rgb '#dd181f' lt 1 lw 2 pt 1 ps 1.5 # --- red + +set style line 2 lc rgb '#dd181f' lt 1 lw 2 pt 5 ps 1.5 # --- red +plot 'EA_DK.txt'index 0 using 1:2 t "EA with sparse polynomials" with linespoints ls 1,\ + 'EA_DK.txt'index 1 using 1:2 t "DK with sparse polynomials" with linespoints ls 3 + + + diff --git a/figures/EA_DK.txt b/figures/EA_DK.txt new file mode 100644 index 0000000..e20822a --- /dev/null +++ b/figures/EA_DK.txt @@ -0,0 +1,50 @@ +# First data block (index 0) +#EA sparse full +#Taille_Poly times nb iter times nb iter +5000 0.40 17 +50000 3.92 17 1407.24 29 +100000 12.45 16 1459.35 31 +150000 28.67 17 754.24 27 +200000 40 23 718.623 27 +250000 93.76 20 715.554 27 +300000 138.94 21 1089.61 27 +350000 159.65 18 1746.53 22 +400000 258.91 22 3112 20 +450000 339.47 23 +500000 419.78 23 +550000 415.94 19 +600000 549.70 21 +650000 612.12 20 +700000 864.21 24 +750000 940.87 23 +800000 1247.16 26 +850000 1702.12 32 +900000 1803.17 30 +950000 2280.07 34 +1000000 2400.51 30 + +# Second data block (index 1) + +#DK sparse full + times nb iter times nb iter +5000 3.42 138 8.61 16 +50000 385.266 823 9.27 19 +100000 447.364 408 7.73 15 +150000 1524.08 552 8.64 21 +200000 3.92233 17 7.84 16 +250000 1958.24 348 11.33 18 +300000 12.3981 21 20.47 21 +350000 23.813 21 35.07 26 +400000 +450000 +500000 +550000 +600000 +650000 +700000 +750000 +800000 +850000 +900000 +950000 +1000000 diff --git a/paper.tex b/paper.tex index 9897244..b9ed2ff 100644 --- a/paper.tex +++ b/paper.tex @@ -4,6 +4,7 @@ %%\usepackage[utf8]{inputenc} %%\usepackage[T1]{fontenc} %%\usepackage[french]{babel} +\usepackage{float} \usepackage{amsmath,amsfonts,amssymb} \usepackage[ruled,vlined]{algorithm2e} %\usepackage[french,boxed,linesnumbered]{algorithm2e} @@ -588,7 +589,6 @@ We study two forms of polynomials the sparse polynomials and the full polynomia \begin{equation} \forall \alpha_{1} \alpha_{2} \in C,\forall n_{1},n_{2} \in N^{*}; P(z)= (z^{n_{1}}-\alpha_{1})(z^{n_{2}}-\alpha_{2}) \end{equation} - This form makes it possible to associate roots having two different modules and thus to work on a polynomial constitute of four non zero terms. @@ -636,7 +636,7 @@ We initially carried out the convergence of Aberth algorithm with various sizes % \label{tab:theConvergenceOfAberthAlgorithm} %\end{table} -\begin{figure}[htbp] +\begin{figure}[H] \centering \includegraphics[width=0.8\textwidth]{figures/Compar_EA_algorithm_CPU_GPU} \caption{Aberth algorithm on CPU and GPU} @@ -665,14 +665,15 @@ We initially carried out the convergence of Aberth algorithm with various sizes %\end{table} -\begin{figure}[htbp] +\begin{figure}[H] \centering \includegraphics[width=0.8\textwidth]{figures/influence_nb_threads} \caption{Influence of the number of threads on the execution times of different polynomials (sparse and full)} \label{fig:01} \end{figure} -\begin{figure}[htbp] +\subsubsection{The impact of exp-log solution to compute very high degrees of polynomial} +\begin{figure}[H] \centering \includegraphics[width=0.8\textwidth]{figures/log_exp} \caption{The impact of exp-log solution to compute very high degrees of polynomial.} @@ -680,18 +681,14 @@ We initially carried out the convergence of Aberth algorithm with various sizes \end{figure} \subsubsection{A comparative study between Aberth and Durand-kerner algorithm} -\begin{table}[htbp] - \centering - \begin{tabular} {|R{2cm}|L{2.5cm}|L{2.5cm}|L{1.5cm}|L{1.5cm}|} - \hline Polynomial's degrees & Aberth $T_{exe}$ & D-Kerner $T_{exe}$ & Aberth iteration & D-Kerner iteration\\ - \hline 5000 & 0.40 & 3.42 & 17 & 138 \\ - \hline 50000 & 3.92 & 385.266 & 17 & 823\\ - \hline 500000 & 497.109 & 4677.36 & 24 & 214\\ - \hline - \end{tabular} - \caption{Aberth algorithm compare to Durand-Kerner algorithm} - \label{tab:AberthAlgorithCompareToDurandKernerAlgorithm} -\end{table} + + +\begin{figure}[H] +\centering + \includegraphics[width=0.8\textwidth]{figures/EA_DK} +\caption{Ehrlisch-Aberth and Durand-Kerner algorithm on GPU} +\label{fig:01} +\end{figure} \bibliography{mybibfile}