From: Kahina Date: Wed, 4 Nov 2015 11:15:51 +0000 (+0100) Subject: Merge branch 'master' of ssh://info.iut-bm.univ-fcomte.fr/kahina_paper1 X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/kahina_paper1.git/commitdiff_plain/e190c5da7c414d75199c2179a1d0268f4171c6c9?hp=0076e484aaf253a71c2940d041a25b156fe1646b Merge branch 'master' of ssh://info.iut-bm.univ-fcomte.fr/kahina_paper1 Conflicts: paper.tex --- diff --git a/figures/sparse_full_explog.pdf b/figures/sparse_full_explog.pdf new file mode 100644 index 0000000..c206985 Binary files /dev/null and b/figures/sparse_full_explog.pdf differ diff --git a/paper.tex b/paper.tex index 7ef6345..34b803c 100644 --- a/paper.tex +++ b/paper.tex @@ -365,6 +365,7 @@ Q(z^{k}_{i})=\exp\left( \ln (p(z^{k}_{i}))-\ln(p'(z^{k}_{i}))+\ln \left( \end{equation} This solution is applied when the root except the circle unit, represented by the radius $R$ evaluated in C language as: + \begin{verbatim} R = exp(log(DBL_MAX)/(2*n) ); \end{verbatim} @@ -731,20 +732,17 @@ For that, we notice that the maximum number of threads per block for the Nvidia The figure 2 show that, the best execution time for both sparse and full polynomial are given when the threads number varies between 64 and 256 threads per bloc. We notice that with small polynomials the best number of threads per block is 64, Whereas, the large polynomials the best number of threads per block is 256. However,In the following experiments we specify that the number of thread by block is 256. -\subsection{The impact of exp-log solution to compute very high degrees of polynomial} +\subsection{The impact of exp.log solution to compute very high degrees of polynomial} -<<<<<<< HEAD In this experiment we report the performance of exp-log solution described in Section~\ref{sec2} to compute very high degrees polynomials. -======= -In this experiment we report the performance of log.exp solution describe in ~\ref{sec2} to compute very high degrees polynomials. ->>>>>>> 7f2978c0d220516decb65faf2b8ba2da34df8db2 \begin{figure}[htbp] \centering \includegraphics[width=0.8\textwidth]{figures/sparse_full_explog} -\caption{The impact of exp-log solution to compute very high degrees of polynomial.} +\caption{The impact of exp.log solution to compute very high degrees of polynomial.} \label{fig:03} \end{figure} + Figure~\ref{fig:03} shows a comparison between the execution time of the Ehrlich-Aberth algorithm using the exp.log solution and the execution time of the Ehrlich-Aberth algorithm without this solution, @@ -761,6 +759,7 @@ high degree polynomials. + \subsection{Comparison of the Durand-Kerner and the Ehrlich-Aberth methods} In this part, we compare the Durand-Kerner and the Ehrlich-Aberth