From 5771bd90bdc89ce5ca4a1947aca277e3101ea508 Mon Sep 17 00:00:00 2001 From: couturie Date: Mon, 2 Nov 2015 11:09:31 -0500 Subject: [PATCH] new --- paper.tex | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/paper.tex b/paper.tex index 276c50a..c4fa445 100644 --- a/paper.tex +++ b/paper.tex @@ -348,7 +348,7 @@ Using the logarithm (eq.~\ref{deflncomplex}) and the exponential (eq.~\ref{defex manipulate lower absolute values and the roots for large polynomial's degrees can be looked for successfully~\cite{Karimall98}. Applying this solution for the Ehrlich-Aberth method we obtain the -iteration function with logarithm: +iteration function with exponential and logarithm: %%$$ \exp \bigl( \ln(p(z)_{k})-ln(\ln(p(z)_{k}^{'}))- \ln(1- \exp(\ln(p(z)_{k})-ln(\ln(p(z)_{k}^{'})+\ln\sum_{i\neq j}^{n}\frac{1}{z_{k}-z_{j}})$$ \begin{equation} \label{Log_H2} -- 2.39.5