From 636c3a5433074f7cb112765bbe6183b0237a67b8 Mon Sep 17 00:00:00 2001 From: Kahina Date: Thu, 5 Nov 2015 10:34:18 +0100 Subject: [PATCH] new --- mybibfile.bib | 2 +- paper.tex | 4 ++-- 2 files changed, 3 insertions(+), 3 deletions(-) diff --git a/mybibfile.bib b/mybibfile.bib index 47cab48..5177fd8 100644 --- a/mybibfile.bib +++ b/mybibfile.bib @@ -165,7 +165,7 @@ OPTannote = {•} } @Article{Kahinall14, - title = "Parallel implementation of the Durand-Kerner algorithm for polynomial root-finding on GPU", + title = "Parallel implementation of the {D}urand-{K}erner algorithm for polynomial root-finding on GPU", journal = "IEEE. Conf. on advanced Networking, Distributed Systems and Applications", volume = "", number = "", diff --git a/paper.tex b/paper.tex index 1d70450..2b6ac7f 100644 --- a/paper.tex +++ b/paper.tex @@ -350,7 +350,7 @@ iteration function with exponential and logarithm: %%$$ \exp \bigl( \ln(p(z)_{k})-ln(\ln(p(z)_{k}^{'}))- \ln(1- \exp(\ln(p(z)_{k})-ln(\ln(p(z)_{k}^{'})+\ln\sum_{i\neq j}^{n}\frac{1}{z_{k}-z_{j}})$$ \begin{equation} \label{Log_H2} -EA.EL: z^{k+1}=z_{i}^{k}-\exp \left(\ln \left( +EA.EL: z^{k+1}_{i}=z_{i}^{k}-\exp \left(\ln \left( p(z_{i}^{k})\right)-\ln\left(p'(z^{k}_{i})\right)- \ln \left(1-Q(z^{k}_{i})\right)\right), \end{equation} @@ -360,7 +360,7 @@ where: \begin{equation} \label{Log_H1} Q(z^{k}_{i})=\exp\left( \ln (p(z^{k}_{i}))-\ln(p'(z^{k}_{i}))+\ln \left( -\sum_{k\neq j}^{n}\frac{1}{z^{k}_{i}-z^{k}_{j}}\right)\right). +\sum_{i\neq j}^{n}\frac{1}{z^{k}_{i}-z^{k}_{j}}\right)\right)i=1,...,n, \end{equation} This solution is applied when the root except the circle unit, represented by the radius $R$ evaluated in C language as: -- 2.39.5