-In this paper, we have presented a parallel implementation of Ehrlich-Aberth algorithm for solving full and sparse polynomials, on single GPU with CUDA and Multi-GPUs using two parallel paradigm, shared memory with OpenMP, distributed memory with MPI.(CUDA-OpenMP) approach and (CUDA-MPI) approach,
-We have performed many experiments with the Ehrlich-Aberth method in single GPU, Multi-GPU with (CUDA-OpenMP) approach, Multi-GPU with (CUDA-MPI) approach for sparse and full polynomials. the experiments show that, using parallel programming model like (OpenMP, MPI) can effectively manage multiple graphics cards to work together to solve the same problem and accelerate parallel applications, like (CUDA MPI) approach with 4 GPUs can solve a polynomial of 1,000,000 4 speed up than on single GPU.
+In this paper, we have presented a parallel implementation of Ehrlich-Aberth algorithm for solving full and sparse polynomials, on single GPU with CUDA and on Multi-GPUs using two parallel paradigm, shared memory with OpenMP, distributed memory with MPI.(CUDA-OpenMP) approach and (CUDA-MPI) approach,
+We have performed many experiments with the Ehrlich-Aberth method in single GPU, Multi-GPU with (CUDA-OpenMP) approach, Multi-GPU with (CUDA-MPI) approach for sparse and full polynomials. the experiments show that, using parallel programming model like (OpenMP, MPI) can efficiently manage multiple graphics cards to work together to solve the same problem and accelerate parallel applications, like (CUDA MPI) approach with 4 GPUs can solve a polynomial of 1,000,000 4 speed up than on single GPU.