- At the end of each application of the iterative function, a stop condition is verified consists in stopping the iterative process when the whole of the modules of the roots are lower than a fixed value $\xi$
+contain 4 steps, start from the initial approximations of all the roots of the polynomial,the second step initialize the solution vector $Z$ using the Guggenheimer~\cite{Gugg86} method to assure the distinction of the initial vector roots,
+
+ than in step 3 we apply the the iterative function based on the Newton's method~\cite{newt70} and Weiestrass operator~\cite{Weierstrass03}, wich will make it possible to converge to the roots solution, provided that all the root are different.
+
+
+ At the end of each application of the iterative function, a stop condition is verified consists in stopping the iterative process when the whole of the modules of the roots are lower than a fixed value $\xi$.