-\subsection{M-GPU : an OpenMP-CUDA approach}
-Our OpenMP-CUDA implementation of EA algorithm is based on the hybrid OpenMP and CUDA programming model. It works as follows.
-Based on the metadata, a shared memory is used to make data evenly shared among OpenMP threads. The shared data are the solution vector $Z$, the polynomial to solve $P$, and the error vector $\Delta z$. Let (T\_omp) the number of OpenMP threads be equal to the number of GPUs, each OpenMP thread binds to one GPU, and controls a part of the shared memory, that is a part of the vector Z , that is $(n/num\_gpu)$ roots where $n$ is the polynomial's degree and $num\_gpu$ the total number of available GPUs. Each OpenMP thread copies its data from host memory to GPU’s device memory. Then every GPU will have a grid of computation organized according to the device performance and the size of data on which it runs the computation kernels. %In principle a grid is set by two parameter DimGrid, the number of block per grid, DimBloc: the number of threads per block. The following schema shows the architecture of (CUDA,OpenMP).
+\subsection{an OpenMP-CUDA approach}
+Our OpenMP-CUDA implementation of EA algorithm is based on the hybrid
+OpenMP and CUDA programming model. All the data are shared with
+OpenMP amoung all the OpenMP threads. The shared data are the solution
+vector $Z$, the polynomial to solve $P$, and the error vector $\Delta
+z$. The number of OpenMP threads is equal to the number of GPUs, each
+OpenMP thread binds to one GPU, and it controls a part of the shared
+memory. More precisely each OpenMP thread will be responsible to
+update its owns part of the vector Z. This part is call $Z_{loc}$ in
+the following. Then all GPUs will have a grid of computation organized
+according to the device performance and the size of data on which it
+runs the computation kernels.
+
+To compute one iteration of the EA method each GPU performs the
+followings steps. First roots are shared with OpenMP and the
+computation of the local size for each GPU is performed (lines 5-7 in
+Algo\ref{alg2-cuda-openmp}). Each thread starts by copying all the
+previous roots inside its GPU (line 9). Then each GPU will copy the
+previous roots (line 10) and it will compute an iteration of the EA
+method on its own roots (line 11). For that all the other roots are
+used. The convergence is checked on the new roots (line 12). At the end
+of an iteration, the updated roots are copied from the GPU to the
+CPU (line 14) by direcly updating its own roots in the shared memory
+arrays containing all the roots.
+
+%In principle a grid is set by two parameter DimGrid, the number of block per grid, DimBloc: the number of threads per block. The following schema shows the architecture of (CUDA,OpenMP).