\KwOut{$Z$ (solution vector of roots)}
Initialize the polynomial $P$ and its derivative $P'$\;
Set the initial values of vector $Z$\;
-Copy $P$, $P'$ and $Z$ from the CPU memory to the GPU memory\;
+Copy $P$, $P'$ and $Z$ from CPU to GPU\;
\While{\emph{not convergence}}{
- $Z_{prev}$ = Kernel\_Save($Z$)\;
- $Z$ = Kernel\_Update($P,P',Z$)\;
- Kernel\_Test\_Convergence($Z,Z_{prev},\epsilon$)\;
+ $Z^{prev}$ = KernelSave($Z,n$)\;
+ $Z$ = KernelUpdate($P,P',Z^{prev},n$)\;
+ $\Delta Z$ = KernelComputeError($Z,Z^{prev},n$)\;
+ $\Delta Z_{max}$ = CudaMaxFunction($\Delta Z,n$)\;
+ TestConvergence($\Delta Z_{max},\epsilon$)\;
}
-Copy $Z$ from the GPU memory to the CPU memory\;
+Copy $Z$ from GPU to CPU\;
\label{alg1-cuda}
+\RC{Si l'algo vous convient, il faudrait le détailler précisément\LZK{J'ai modifié l'algo. Sinon, est ce qu'on doit mettre en paramètre $Z^{prev}$ ou $Z$ tout court (dans le cas où on exploite l'asynchronisme des threads cuda!) pour le Kernel\_Update? }}
\end{algorithm}
-
-
-
-
-
-
-
-
-
-\RC{Si l'algo vous convient, il faudrait le détailler précisément}
\section{The EA algorithm on Multiple GPUs}
\label{sec4}
%% roots sufficiently converge.
-\begin{algorithm}[h]
-\label{alg2-cuda-openmp}
+%% \begin{algorithm}[h]
+%% \label{alg2-cuda-openmp}
+%% \LinesNumbered
+%% \SetAlgoNoLine
+%% \caption{CUDA-OpenMP Algorithm to find roots with the Ehrlich-Aberth method}
+
+%% \KwIn{$Z^{0}$ (Initial root's vector), $\varepsilon$ (Error tolerance
+%% threshold), P (Polynomial to solve), Pu (Derivative of P), $n$ (Polynomial degree), $\Delta z$ ( Vector of errors for stop condition), $num\_gpus$ (number of OpenMP threads/ Number of GPUs), $Size$ (number of roots)}
+
+%% \KwOut {$Z$ ( Root's vector), $ZPrec$ (Previous root's vector)}
+
+%% \BlankLine
+
+%% Initialization of P\;
+%% Initialization of Pu\;
+%% Initialization of the solution vector $Z^{0}$\;
+%% Start of a parallel part with OpenMP (Z, $\Delta z$, P are shared variables)\;
+%% gpu\_id=cudaGetDevice()\;
+%% Allocate memory on GPU\;
+%% Compute local size and offet according to gpu\_id\;
+%% \While {$error > \epsilon$}{
+%% copy Z from CPU to GPU\;
+%% $ ZPrec_{loc}=kernel\_save(Z_{loc})$\;
+%% $ Z_{loc}=kernel\_update(Z,P,Pu)$\;
+%% $\Delta z[gpu\_id] = kernel\_testConv(Z_{loc},ZPrec_{loc})$\;
+%% $ error= Max(\Delta z)$\;
+%% copy $Z_{loc}$ from GPU to Z in CPU
+%% }
+%%\end{algorithm}
+
+\begin{algorithm}[htpb]
\LinesNumbered
\SetAlgoNoLine
-\caption{CUDA-OpenMP Algorithm to find roots with the Ehrlich-Aberth method}
-
-\KwIn{$Z^{0}$ (Initial root's vector), $\varepsilon$ (Error tolerance
- threshold), P (Polynomial to solve), Pu (Derivative of P), $n$ (Polynomial degree), $\Delta z$ ( Vector of errors for stop condition), $num\_gpus$ (number of OpenMP threads/ Number of GPUs), $Size$ (number of roots)}
-
-\KwOut {$Z$ ( Root's vector), $ZPrec$ (Previous root's vector)}
-
-\BlankLine
-
-Initialization of P\;
-Initialization of Pu\;
-Initialization of the solution vector $Z^{0}$\;
-Start of a parallel part with OpenMP (Z, $\Delta z$, P are shared variables)\;
-gpu\_id=cudaGetDevice()\;
-Allocate memory on GPU\;
-Compute local size and offet according to gpu\_id\;
-\While {$error > \epsilon$}{
- copy Z from CPU to GPU\;
-$ ZPrec_{loc}=kernel\_save(Z_{loc})$\;
-$ Z_{loc}=kernel\_update(Z,P,Pu)$\;
-$\Delta z[gpu\_id] = kernel\_testConv(Z_{loc},ZPrec_{loc})$\;
-$ error= Max(\Delta z)$\;
- copy $Z_{loc}$ from GPU to Z in CPU
+\caption{Finding roots of polynomials with the Ehrlich-Aberth method on multiple GPUs using OpenMP}
+\KwIn{$n$ (polynomial's degree), $\epsilon$ (tolerance threshold), $ngpu$ (number of GPUs)}
+\KwOut{$Z$ (solution vector of roots)}
+Initialize the polynomial $P$ and its derivative $P'$\;
+Set the initial values of vector $Z$\;
+Start of a parallel part with OpenMP ($Z$, $\Delta Z$, $\Delta Z_{max}$, $P$ are shared variables)\;
+$id_{gpu}$ = cudaGetDevice()\;
+$n_{loc}$ = $n/ngpu$ (local size)\;
+%$idx$ = $id_{gpu}\times n_{loc}$ (local offset)\;
+Copy $P$, $P'$ from CPU to GPU\;
+\While{\emph{not convergence}}{
+ Copy $Z$ from CPU to GPU\;
+ $Z^{prev}$ = KernelSave($Z,n$)\;
+ $Z_{loc}$ = KernelUpdate($P,P',Z^{prev},n_{loc}$)\;
+ $\Delta Z_{loc}$ = KernelComputeError($Z_{loc},Z^{prev}_{loc},n_{loc}$)\;
+ $\Delta Z_{max}[id_{gpu}]$ = CudaMaxFunction($\Delta Z_{loc},n_{loc}$)\;
+ Copy $Z_{loc}$ from GPU to $Z$ in CPU\;
+ $max$ = MaxFunction($\Delta Z_{max},ngpu$)\;
+ TestConvergence($max,\epsilon$)\;
}
+\label{alg2-cuda-openmp}
+\LZK{J'ai modifié l'algo. Le $P$ est mis shared. Qu'en est-il pour $P'$?}
\end{algorithm}
+
+
\subsection{an MPI-CUDA approach}
%\begin{figure}[htbp]
%\centering