-The main problem of the simultaneous methods is that the necessary
-time needed for the convergence increases with the increasing of the
-polynomial's degree. Many authors have treated the problem of
-implementing simultaneous methods in
-parallel. Freeman~\cite{Freeman89} implemented and compared
-Durand-Kerner method, Ehrlich-Aberth method and another method of the
-fourth order of convergence proposed by Farmer and
-Loizou~\cite{Loizou83} on a 8-processor linear chain, for polynomials
-of degree up-to 8. The method of Farmer and Loizou~\cite{Loizou83}
-often diverges, but the first two methods (Durand-Kerner and
-Ehrlich-Aberth methods) have a speed-up equals to 5.5. Later, Freeman
-and Bane~\cite{Freemanall90} considered asynchronous algorithms in
-which each processor continues to update its approximations even
-though the latest values of other approximations $z^{k}_{i}$ have not
-been received from the other processors, in contrast with synchronous
-algorithms where it would wait those values before making a new
-iteration. Couturier and al.~\cite{Raphaelall01} proposed two methods
-of parallelization for a shared memory architecture with OpenMP and
-for a distributed memory one with MPI. They are able to compute the
-roots of sparse polynomials of degree 10,000. The authors showed an interesting
-speedup that is 20 times as fast as the sequential implementation.
-%which takes up-to 3,300 seconds to obtain same results.
-\RC{si on donne des temps faut donner le proc, comme c'est vieux à mon avis faut supprimer ca, votre avis?}
-\LZK{Supprimons ces détails et mettons une référence s'il y en a une}
-\KG{Je viens de supprimer les détails, la référence existe déja, a reverifier}
-Very few work had been performed since then until the appearing of the Compute Unified Device Architecture (CUDA)~\cite{CUDA15}, a parallel computing platform and a programming model invented by NVIDIA. The computing power of GPUs (Graphics Processing Units) has exceeded that of traditional processors CPUs. However, CUDA adopts a totally new computing architecture to use the hardware resources provided by the GPU in order to offer a stronger computing ability to the massive data computing. Ghidouche et al.~\cite{Kahinall14} proposed an implementation of the Durand-Kerner method on a single GPU. Their main results showed that a parallel CUDA implementation is about 10 times faster than the sequential implementation on a single CPU for sparse polynomials of degree 48,000.
+
+The convergence time of simultaneous methods drastically increases with the increasing of the polynomial's degree. The great challenge with simultaneous methods is to parallelize them and to improve their convergence. Many authors have proposed parallel simultaneous methods~\cite{Freeman89,Loizou83,Freemanall90,cs01:nj,Couturier02}, using several paradigms of parallelization (synchronous or asynchronous computations, mechanism of shared or distributed memory, etc). However, they have treated only polynomials not exceeding degrees of 20,000.
+
+%The main problem of the simultaneous methods is that the necessary
+%time needed for the convergence increases with the increasing of the
+%polynomial's degree. Many authors have treated the problem of
+%implementing simultaneous methods in
+%parallel. Freeman~\cite{Freeman89} implemented and compared
+%Durand-Kerner method, Ehrlich-Aberth method and another method of the
+%fourth order of convergence proposed by Farmer and
+%Loizou~\cite{Loizou83} on a 8-processor linear chain, for polynomials
+%of degree up-to 8. The method of Farmer and Loizou~\cite{Loizou83}
+%often diverges, but the first two methods (Durand-Kerner and
+%Ehrlich-Aberth methods) have a speed-up equals to 5.5. Later, Freeman
+%and Bane~\cite{Freemanall90} considered asynchronous algorithms in
+%which each processor continues to update its approximations even
+%though the latest values of other approximations $z^{k}_{i}$ have not
+%been received from the other processors, in contrast with synchronous
+%algorithms where it would wait those values before making a new
+%iteration. Couturier and al.~\cite{cs01:nj} proposed two methods
+%of parallelization for a shared memory architecture with OpenMP and
+%for a distributed memory one with MPI. They are able to compute the
+%roots of sparse polynomials of degree 10,000. The authors showed an interesting
+%speedup that is 20 times as fast as the sequential implementation.
+
+Very few work had been performed since then until the appearing of the Compute Unified Device Architecture (CUDA)~\cite{CUDA15}, a parallel computing platform and a programming model invented by NVIDIA. The computing power of GPUs (Graphics Processing Units) has exceeded that of traditional processors CPUs. However, CUDA adopts a totally new computing architecture to use the hardware resources provided by the GPU in order to offer a stronger computing ability to the massive data computing. Ghidouche et al.~\cite{Kahinall14} proposed an implementation of the Durand-Kerner method on a single GPU. Their main results showed that a parallel CUDA implementation is about 10 times faster than the sequential implementation on a single CPU for sparse polynomials of degree 48,000.