+polynomials. As said previously, we manage both functions of
+evaluation: the normal method, based on the method of
+Horner and the method based on the logarithm of the polynomial. All
+these methods were rather long to implement, as the development of
+corresponding kernels with CUDA is longer than on a CPU host. This
+comes in particular from the fact that it is very difficult to debug
+CUDA running threads like threads on a CPU host. In the following
+paragraph Algorithm~\ref{alg1-cuda} shows the GPU parallel
+implementation of Ehrlich-Aberth method.
+\LZK{Vaut mieux expliquer l'implémentation en faisant référence à l'algo séquentiel que de parler des différentes steps.}
+
+
+
+\begin{algorithm}[htpb]
+\LinesNumbered
+\SetAlgoNoLine
+\caption{Finding roots of polynomials with the Ehrlich-Aberth method on a GPU}
+\KwIn{$n$ (polynomial's degree), $\epsilon$ (tolerance threshold)}
+\KwOut{$Z$ (solution vector of roots)}
+Initialize the polynomial $P$ and its derivative $P'$\;
+Set the initial values of vector $Z$\;
+Copy $P$, $P'$ and $Z$ from CPU to GPU\;
+\While{\emph{not convergence}}{
+ $Z^{prev}$ = KernelSave($Z,n$)\;
+ $Z$ = KernelUpdate($P,P',Z,n$)\;
+ $\Delta Z$ = KernelComputeError($Z,Z^{prev},n$)\;
+ $\Delta Z_{max}$ = CudaMaxFunction($\Delta Z,n$)\;
+ TestConvergence($\Delta Z_{max},\epsilon$)\;
+}
+Copy $Z$ from GPU to CPU\;
+\label{alg1-cuda}
+\LZK{J'ai modifié l'algo. Sinon, est ce qu'on doit mettre en paramètre
+ $Z^{prev}$ ou $Z$ tout court (dans le cas où on exploite
+ l'asynchronisme des threads cuda!) pour le Kernel\_Update? }
+\RC{Le $Z_{prev}$ sert à calculer l'erreur donc j'ai remis Z. La ligne
+avec TestConvergence ca fait une ligne de plus.}
+\end{algorithm}
+
+
+\section{The EA algorithm on Multiple GPUs}
+\label{sec4}
+\subsection{an OpenMP-CUDA approach}
+Our OpenMP-CUDA implementation of EA algorithm is based on the hybrid
+OpenMP and CUDA programming model. All the data are shared with
+OpenMP amoung all the OpenMP threads. The shared data are the solution
+vector $Z$, the polynomial to solve $P$, and the error vector $\Delta
+z$. The number of OpenMP threads is equal to the number of GPUs, each
+OpenMP thread binds to one GPU, and it controls a part of the shared
+memory. More precisely each OpenMP thread will be responsible to
+update its owns part of the vector Z. This part is call $Z_{loc}$ in
+the following. Then all GPUs will have a grid of computation organized
+according to the device performance and the size of data on which it
+runs the computation kernels.
+
+To compute one iteration of the EA method each GPU performs the
+followings steps. First roots are shared with OpenMP and the
+computation of the local size for each GPU is performed (lines 5-7 in
+Algo\ref{alg2-cuda-openmp}). Each thread starts by copying all the
+previous roots inside its GPU (line 9). Then each GPU will copy the
+previous roots (line 10) and it will compute an iteration of the EA
+method on its own roots (line 11). For that all the other roots are
+used. The convergence is checked on the new roots (line 12). At the end
+of an iteration, the updated roots are copied from the GPU to the
+CPU (line 14) by direcly updating its own roots in the shared memory
+arrays containing all the roots.
+
+
+
+\begin{algorithm}[htpb]
+\LinesNumbered
+\SetAlgoNoLine
+\caption{Finding roots of polynomials with the Ehrlich-Aberth method on multiple GPUs using OpenMP}
+\KwIn{$n$ (polynomial's degree), $\epsilon$ (tolerance threshold), $ngpu$ (number of GPUs)}
+\KwOut{$Z$ (solution vector of roots)}
+Initialize the polynomial $P$ and its derivative $P'$\;
+Set the initial values of vector $Z$\;
+Start of a parallel part with OpenMP ($Z$, $\Delta Z$, $\Delta
+Z_{max}$, $P$, $P'$ are shared variables)\;
+$id_{gpu}$ = cudaGetDevice()\;
+$n_{loc}$ = $n/ngpu$ (local size)\;
+%$idx$ = $id_{gpu}\times n_{loc}$ (local offset)\;
+Copy $P$, $P'$ from CPU to GPU\;
+\While{\emph{not convergence}}{
+ Copy $Z$ from CPU to GPU\;
+ $Z^{prev}$ = KernelSave($Z,n$)\;
+ $Z_{loc}$ = KernelUpdate($P,P',Z^{prev},n_{loc}$)\;
+ $\Delta Z_{loc}$ = KernelComputeError($Z_{loc},Z^{prev}_{loc},n_{loc}$)\;
+ $\Delta Z_{max}[id_{gpu}]$ = CudaMaxFunction($\Delta Z_{loc},n_{loc}$)\;
+ Copy $Z_{loc}$ from GPU to $Z$ in CPU\;
+ $max$ = MaxFunction($\Delta Z_{max},ngpu$)\;
+ TestConvergence($max,\epsilon$)\;
+}
+\label{alg2-cuda-openmp}
+\LZK{J'ai modifié l'algo. Le $P$ est mis shared. Qu'en est-il pour
+ $P'$?}\RC{Je l'ai rajouté. Bon sinon le n\_loc ne remplace pas
+ vraiment un offset et une taille mais bon... et là il y a 4 lignes
+ pour la convergence, c'est bcp ... Zloc, Zmax, max et
+ testconvergence. On pourrait faire mieux}
+\end{algorithm}
+
+
+
+
+
+\subsection{an MPI-CUDA approach}
+
+Our parallel implementation of EA to find root of polynomials using a CUDA-MPI approach is a data parallel approach. It splits input data of the polynomial to solve among MPI processes. In Algorithm \ref{alg2-cuda-mpi}, input data are the polynomial to solve $P$, the solution vector $Z$, the previous solution vector $ZPrev$, and the value of errors of stop condition $\Delta z$. Let $p$ denote the number of MPI processes on and $n$ the degree of the polynomial to be solved. The algorithm performs a simple data partitioning by creating $p$ portions, of at most $\lceil n/p \rceil$ roots to find per MPI process, for each $Z$ and $ZPrec$. Consequently, each MPI process of rank $k$ will have its own solution vector $Z_{k}$ and $ZPrec$, the error related to the stop condition $\Delta z_{k}$, enabling each MPI process to compute $\lceil n/p \rceil$ roots.
+
+Since a GPU works only on data already allocated in its memory, all local input data, $Z_{k}$, $ZPrec$ and $\Delta z_{k}$, must be transferred from CPU memories to the corresponding GPU memories. Afterwards, the same EA algorithm (Algorithm \ref{alg1-cuda}) is run by all processes but on different polynomial subset of roots $ p(x)_{k}=\sum_{i=1}^{n} a_{i}x^{i}, k=1,...,p$. Each MPI process executes the loop \verb=(While(...)...do)= containing the CUDA kernels but each MPI process computes only its own portion of the roots according to the rule ``''owner computes``''. The local range of roots is indicated with the \textit{index} variable initialized at (line 5, Algorithm \ref{alg2-cuda-mpi}), and passed as an input variable to $kernel\_update$ (line 10, Algorithm \ref{alg2-cuda-mpi}). After each iteration, MPI processes synchronize (\verb=MPI_Allreduce= function) by a reduction on $\Delta z_{k}$ in order to compute the maximum error related to the stop condition. Finally, processes copy the values of new computed roots from GPU memories to CPU memories, then communicate their results to other processes with \verb=MPI_Alltoall= broadcast. If the stop condition is not verified ($error > \epsilon$) then processes stay withing the loop \verb= while(...)...do= until all the roots sufficiently converge.
+
+\begin{algorithm}[htpb]
+\label{alg2-cuda-mpi}