]> AND Private Git Repository - kahina_paper2.git/blobdiff - paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
MAJ
[kahina_paper2.git] / paper.tex
index b901a2f811ab2ffcd5049d36e1d4379468b84bf9..8d0dc139fe614160c642fd590bdf67254aee59ca 100644 (file)
--- a/paper.tex
+++ b/paper.tex
@@ -492,7 +492,14 @@ We introduced three paradigms of parallel programming. Our objective consist to
 
 \section{The EA algorithm on single GPU}
 \subsection{the EA method}
 
 \section{The EA algorithm on single GPU}
 \subsection{the EA method}
-the Ehrlich-Aberth method is an iterative  method , contain 4 steps, start from the initial approximations of all the
+%\begin{figure}[htbp]
+%\centering
+ % \includegraphics[angle=-90,width=0.5\textwidth]{EA-Algorithm}
+%\caption{The Ehrlich-Aberth algorithm on single GPU}
+%\label{fig:03}
+%\end{figure}
+
+the Ehrlich-Aberth method is an iterative  method, contain 4 steps, start from the initial approximations of all the
 roots of the polynomial,the second step initialize the solution vector $Z$ using the Guggenheimer method to assure the distinction of the initial vector roots, than in step 3 we apply the the iterative function based on the Newton's method and Weiestrass operator[...,...], wich will make it possible to converge to the roots solution, provided that all the root are different. At the end of each application of the iterative function, a stop condition is verified consists in stopping the iterative process when the whole of the modules of the roots
 are lower than a fixed value $ε$ 
 \subsection{EA parallel implementation on CUDA}
 roots of the polynomial,the second step initialize the solution vector $Z$ using the Guggenheimer method to assure the distinction of the initial vector roots, than in step 3 we apply the the iterative function based on the Newton's method and Weiestrass operator[...,...], wich will make it possible to converge to the roots solution, provided that all the root are different. At the end of each application of the iterative function, a stop condition is verified consists in stopping the iterative process when the whole of the modules of the roots
 are lower than a fixed value $ε$ 
 \subsection{EA parallel implementation on CUDA}
@@ -530,7 +537,7 @@ Algorithm 1 shows the GPU parallel implementation of Ehrlich-Aberth method.
 Algorithm~\ref{alg2-cuda} shows a sketch of the Ehrlich-Aberth method using CUDA.
 
 \begin{enumerate}
 Algorithm~\ref{alg2-cuda} shows a sketch of the Ehrlich-Aberth method using CUDA.
 
 \begin{enumerate}
-\begin{algorithm}[H]
+\begin{algorithm}[htpb]
 \label{alg2-cuda}
 %\LinesNumbered
 \caption{CUDA Algorithm to find roots with the Ehrlich-Aberth method}
 \label{alg2-cuda}
 %\LinesNumbered
 \caption{CUDA Algorithm to find roots with the Ehrlich-Aberth method}
@@ -565,32 +572,157 @@ Algorithm~\ref{alg2-cuda} shows a sketch of the Ehrlich-Aberth method using CUDA
 \section{The EA algorithm on Multi-GPU}
 
 \subsection{MGPU (OpenMP-CUDA)approach}
 \section{The EA algorithm on Multi-GPU}
 
 \subsection{MGPU (OpenMP-CUDA)approach}
-begin{figure}[htbp]
-\centering
-  \includegraphics[angle=-90,width=0.8\textwidth]{GPU_openmp}
-\caption{Execution times in seconds of the Ehrlich-Aberth method on GPUs using shared memory paradigm with OpenMP}
-\label{fig:01}
-\end{figure}
+Before starting computations, our parallel implementation shared input data of the root finding polynomial between OpenMP threads. From Algorithm 1, the input data are the solution vector $Z$, the polynomial to solve $P$. Let number of OpenMP threads is equal to the number of GPUs, each threads OpenMP ( T-omp) checks one GPU,  and control a part of the shared memory, that is a part of the vector Z  like: $(n/Nbr_gpu)$ roots, n: the polynomial's degrees, $Nbr_gpu$ the number of GPUs. Then every GPU will have a grid of computation organized with its performances and the size of data of which it checks. In principle a grid is set by two parameter DimGrid, the number of block per grid, DimBloc: the number of threads per block. The following schema  shows the architecture of (CUDA,OpenMP).
+
+%\begin{figure}[htbp]
+%\centering
+ % \includegraphics[angle=-90,width=0.5\textwidth]{OpenMP-CUDA}
+%\caption{The OpenMP-CUDA architecture}
+%\label{fig:03}
+%\end{figure}
+
+
+Each thread OpenMP compute the kernels on GPUs,than after each iteration they copy out the data from GPU memory to CPU shared memory. The kernels are re-runs is up to the roots converge sufficiently. Here are below the corresponding algorithm:
+\begin{enumerate}
+\begin{algorithm}[htpb]
+\label{alg2-cuda}
+%\LinesNumbered
+\caption{CUDA-OpenMP Algorithm to find roots with the Ehrlich-Aberth method}
+
+\KwIn{$Z^{0}$ (Initial root's vector), $\varepsilon$ (Error tolerance
+  threshold), P (Polynomial to solve), Pu (Derivative of P), $n$ (Polynomial degrees), $\Delta z$ ( Vector of errors of stop condition), $num_gpus$ (number of OpenMP threads/ number of GPUs), Size (number of roots)}
+
+\KwOut {$Z$ (Solution root's vector), $ZPrec$ (Previous solution root's vector)}
+
+\BlankLine
+
+\item Initialization of the of P\;
+\item Initialization of the of Pu\;
+\item Initialization of the solution vector $Z^{0}$\;
+\verb=omp_set_num_threads(num_gpus);=
+\verb=cudaGetDevice(gpu_id);=
+\verb=#pragma omp parallel shared(Z,$\Delta$ z,P);=
+\item Allocate and copy initial data from CPU memory to the GPU global memories\;
+\item index= $Size/num\_gpus$\;
+\item k=0\;
+\While {$error > \epsilon$}{
+\item Let $\Delta z=0$\;
+\item $ kernel\_save(ZPrec,Z)$\;
+\item  k=k+1\;
+\item $ kernel\_update(Z,P,Pu,index)$\;
+\item $kernel\_testConverge(\Delta z[gpu\_id],Z,ZPrec)$\;
+%\verb=#pragma omp barrier;=
+\item error= Max($\Delta z$)\;
+}
+
+\item Copy results from GPU memories to CPU memory\;
+\end{algorithm}
+\end{enumerate}
+~\\ 
+
+
+
+\subsection{Multi-GPU (MPI-CUDA)approach}
+%\begin{figure}[htbp]
+%\centering
+ % \includegraphics[angle=-90,width=0.2\textwidth]{MPI-CUDA}
+%\caption{The MPI-CUDA architecture }
+%\label{fig:03}
+%\end{figure}
+
+
+\begin{enumerate}
+\begin{algorithm}[htpb]
+\label{alg2-cuda}
+%\LinesNumbered
+\caption{CUDA-MPI Algorithm to find roots with the Ehrlich-Aberth method}
+
+\KwIn{$Z^{0}$ (Initial root's vector), $\varepsilon$ (Error tolerance
+  threshold), P (Polynomial to solve), Pu (Derivative of P), $n$ (Polynomial degrees), $\Delta z$ ( error of stop condition), $num_gpus$ (number of MPI processes/ number of GPUs), Size (number of roots)}
+
+\KwOut {$Z$ (Solution root's vector), $ZPrec$ (Previous solution root's vector)}
+
+\BlankLine
+\item Initialization of the P\;
+\item Initialization of the Pu\;
+\item Initialization of the solution vector $Z^{0}$\;
+\item Allocate and copy initial data from CPU memories to the GPU global memories\;
+\item $index= Size/num_gpus$\;
+\item k=0\;
+\While {$error > \epsilon$}{
+\item Let $\Delta z=0$\;
+\item $ kernel\_save(ZPrec,Z)$\;
+\item  k=k+1\;
+\item $ kernel\_update(Z,P,Pu,index)$\;
+\item $kernel\_testConverge(\Delta z,Z,ZPrec)$\;
+\item Copy results from GPU memories to CPU memories\;
+\item Send $Z[id]$ to all neighboring processes\;
+\item Receive $Z[j]$ from neighboring process j\;
+\item ComputeMaxError($\Delta z$,error)\;
+
+}
+\end{algorithm}
+\end{enumerate}
+~\\ 
 
 
-\subsection{MGPU (OpenMP-CUDA)approach}
-\subsection{MGPU (MPI-CUDA)approach}
 \section{experiments}
 \section{experiments}
+
 \begin{figure}[htbp]
 \centering
 \begin{figure}[htbp]
 \centering
-  \includegraphics[angle=-90,width=0.8\textwidth]{GPU_openmp}
-\caption{Execution times in seconds of the Ehrlich-Aberth method on GPUs using shared memory paradigm with OpenMP}
+  \includegraphics[angle=-90,width=0.5\textwidth]{Sparse_openmp}
+\caption{Execution times in seconds of the Ehrlich-Aberth method for solving sparse polynomials on GPUs using shared memory paradigm with OpenMP}
 \label{fig:01}
 \end{figure}
 
 \begin{figure}[htbp]
 \centering
 \label{fig:01}
 \end{figure}
 
 \begin{figure}[htbp]
 \centering
-  \includegraphics[angle=-90,width=0.8\textwidth]{GPU_mpi}
-\caption{Execution times in seconds of the Ehrlich-Aberth method on GPUs using distributed memory paradigm with MPI}
+  \includegraphics[angle=-90,width=0.5\textwidth]{Sparse_mpi}
+\caption{Execution times in seconds of the Ehrlich-Aberth method for solving sparse polynomials on GPUs using distributed memory paradigm with MPI}
 \label{fig:02}
 \end{figure}
 \label{fig:02}
 \end{figure}
-\subsection{MGPU (MPI-CUDA)approach}
 
 
-\section{experiments}
+\begin{figure}[htbp]
+\centering
+  \includegraphics[angle=-90,width=0.5\textwidth]{Full_openmp}
+\caption{Execution times in seconds of the Ehrlich-Aberth method for solving full polynomials on GPUs using shared memory paradigm with OpenMP}
+\label{fig:03}
+\end{figure}
+
+\begin{figure}[htbp]
+\centering
+  \includegraphics[angle=-90,width=0.5\textwidth]{Full_mpi}
+\caption{Execution times in seconds of the Ehrlich-Aberth method for full polynomials on GPUs using distributed memory paradigm with MPI}
+\label{fig:04}
+\end{figure}
+
+\begin{figure}[htbp]
+\centering
+  \includegraphics[angle=-90,width=0.5\textwidth]{Sparse_mpivsomp}
+\caption{Comparaison between MPI and OpenMP versions of the Ehrlich-Aberth method for solving sparse plynomials on GPUs}
+\label{fig:05}
+\end{figure}
+
+\begin{figure}[htbp]
+\centering
+  \includegraphics[angle=-90,width=0.5\textwidth]{Full_mpivsomp}
+\caption{Comparaison between MPI and OpenMP versions of the Ehrlich-Aberth method for solving full polynomials on GPUs}
+\label{fig:06}
+\end{figure}
+
+\begin{figure}[htbp]
+\centering
+  \includegraphics[angle=-90,width=0.5\textwidth]{MPI_mpivsomp}
+\caption{Comparaison of execution times of the Ehrlich-Aberth method for solving sparse and full polynomials on GPUs with distributed memory paradigm using MPI}
+\label{fig:07}
+\end{figure}
+
+\begin{figure}[htbp]
+\centering
+  \includegraphics[angle=-90,width=0.5\textwidth]{OMP_mpivsomp}
+\caption{Comparaison of execution times of the Ehrlich-Aberth method for solving sparse and full polynomials on GPUs with shared memory paradigm using OpenMP}
+\label{fig:08}
+\end{figure}
+
 % An example of a floating figure using the graphicx package.
 % Note that \label must occur AFTER (or within) \caption.
 % For figures, \caption should occur after the \includegraphics.
 % An example of a floating figure using the graphicx package.
 % Note that \label must occur AFTER (or within) \caption.
 % For figures, \caption should occur after the \includegraphics.