-$num\_gpus$ OpenMP threads are created using \verb=omp_set_num_threads();=function (step $3$, Algorithm \ref{alg2-cuda-openmp}), the shared memory is created using \verb=#pragma omp parallel shared()= OpenMP function (line $5$, Algorithm\ref{alg2-cuda-openmp}), then each OpenMP thread allocates memory and copies initial data from CPU memory to GPU global memory, executes the kernels on GPU, but computes only his portion of roots indicated with variable \textit{index} initialized in (line 5, Algorithm \ref{alg2-cuda-openmp}), used as input data in the $kernel\_update$ (line 10, Algorithm \ref{alg2-cuda-openmp}). After each iteration, all OpenMP threads synchronize using \verb=#pragma omp barrier;= to gather all the correct values of $\Delta z$, thus allowing the computation the maximum stop condition on vector $\Delta z$ (line 12, Algorithm \ref{alg2-cuda-openmp}). Finally, threads copy the results from GPU memories to CPU memory. The OpenMP threads execute kernels until the roots sufficiently converge.
-\begin{enumerate}
-\begin{algorithm}[htpb]
-\label{alg2-cuda-openmp}
-%\LinesNumbered
-\caption{CUDA-OpenMP Algorithm to find roots with the Ehrlich-Aberth method}
-
-\KwIn{$Z^{0}$ (Initial root's vector), $\varepsilon$ (Error tolerance
- threshold), P (Polynomial to solve), Pu (Derivative of P), $n$ (Polynomial degree), $\Delta z$ ( Vector of errors for stop condition), $num_gpus$ (number of OpenMP threads/ Number of GPUs), $Size$ (number of roots)}
-
-\KwOut {$Z$ ( Root's vector), $ZPrec$ (Previous root's vector)}
-
-\BlankLine
-
-\item Initialization of P\;
-\item Initialization of Pu\;
-\item Initialization of the solution vector $Z^{0}$\;
-\verb=omp_set_num_threads(num_gpus);=
-\verb=#pragma omp parallel shared(Z,$\Delta$ z,P);=
-\verb=cudaGetDevice(gpu_id);=
-\item Allocate and copy initial data from CPU memory to the GPU global memories\;
-\item index= $Size/num\_gpus$\;
-\item k=0\;
-\While {$error > \epsilon$}{
-\item Let $\Delta z=0$\;
-\item $ kernel\_save(ZPrec,Z)$\;
-\item k=k+1\;
-\item $ kernel\_update(Z,P,Pu,index)$\;
-\item $kernel\_testConverge(\Delta z[gpu\_id],Z,ZPrec)$\;
-%\verb=#pragma omp barrier;=
-\item error= Max($\Delta z$)\;
-}
-
-\item Copy results from GPU memories to CPU memory\;
-\end{algorithm}
-\end{enumerate}
-~\\
-
+%% \RC{Surement à virer ou réécrire pour etre compris sans algo}
+%% $num\_gpus$ OpenMP threads are created using
+%% \verb=omp_set_num_threads();=function (step $3$, Algorithm
+%% \ref{alg2-cuda-openmp}), the shared memory is created using
+%% \verb=#pragma omp parallel shared()= OpenMP function (line $5$,
+%% Algorithm\ref{alg2-cuda-openmp}), then each OpenMP thread allocates
+%% memory and copies initial data from CPU memory to GPU global memory,
+%% executes the kernels on GPU, but computes only his portion of roots
+%% indicated with variable \textit{index} initialized in (line 5,
+%% Algorithm \ref{alg2-cuda-openmp}), used as input data in the
+%% $kernel\_update$ (line 10, Algorithm \ref{alg2-cuda-openmp}). After
+%% each iteration, all OpenMP threads synchronize using
+%% \verb=#pragma omp barrier;= to gather all the correct values of
+%% $\Delta z$, thus allowing the computation the maximum stop condition
+%% on vector $\Delta z$ (line 12, Algorithm
+%% \ref{alg2-cuda-openmp}). Finally, threads copy the results from GPU
+%% memories to CPU memory. The OpenMP threads execute kernels until the
+%% roots sufficiently converge.
+
+
+%% \begin{enumerate}
+%% \begin{algorithm}[htpb]
+%% \label{alg2-cuda-openmp}
+%% %\LinesNumbered
+%% \caption{CUDA-OpenMP Algorithm to find roots with the Ehrlich-Aberth method}
+
+%% \KwIn{$Z^{0}$ (Initial root's vector), $\varepsilon$ (Error tolerance
+%% threshold), P (Polynomial to solve), Pu (Derivative of P), $n$ (Polynomial degree), $\Delta z$ ( Vector of errors for stop condition), $num_gpus$ (number of OpenMP threads/ Number of GPUs), $Size$ (number of roots)}
+
+%% \KwOut {$Z$ ( Root's vector), $ZPrec$ (Previous root's vector)}
+
+%% \BlankLine
+
+%% \item Initialization of P\;
+%% \item Initialization of Pu\;
+%% \item Initialization of the solution vector $Z^{0}$\;
+%% \verb=omp_set_num_threads(num_gpus);=
+%% \verb=#pragma omp parallel shared(Z,$\Delta$ z,P);=
+%% \verb=cudaGetDevice(gpu_id);=
+%% \item Allocate and copy initial data from CPU memory to the GPU global memories\;
+%% \item index= $Size/num\_gpus$\;
+%% \item k=0\;
+%% \While {$error > \epsilon$}{
+%% \item Let $\Delta z=0$\;
+%% \item $ kernel\_save(ZPrec,Z)$\;
+%% \item k=k+1\;
+%% \item $ kernel\_update(Z,P,Pu,index)$\;
+%% \item $kernel\_testConverge(\Delta z[gpu\_id],Z,ZPrec)$\;
+%% %\verb=#pragma omp barrier;=
+%% \item error= Max($\Delta z$)\;
+%% }
+
+%% \item Copy results from GPU memories to CPU memory\;
+%% \end{algorithm}
+%% \end{enumerate}
+%% ~\\
+%% \RC{C'est encore pire ici, on ne voit pas les comm CPU <-> GPU }