]> AND Private Git Repository - kahina_paper2.git/blobdiff - paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
revu s1
[kahina_paper2.git] / paper.tex
index a2e5a923e054712ba059013b5faf4f85aff60841..9810500f763903b9a68ae241d15811a055ee995f 100644 (file)
--- a/paper.tex
+++ b/paper.tex
 % correct bad hyphenation here
 \hyphenation{op-tical net-works semi-conduc-tor}
 %\usepackage{graphicx}
 % correct bad hyphenation here
 \hyphenation{op-tical net-works semi-conduc-tor}
 %\usepackage{graphicx}
-
-
+\bibliographystyle{IEEEtran}
+% argument is your BibTeX string definitions and bibliography database(s)
+%\bibliography{IEEEabrv,../bib/paper}
+\bibliographystyle{elsarticle-num}
 \begin{document}
 %
 % paper title
 \begin{document}
 %
 % paper title
@@ -404,19 +406,19 @@ The abstract goes here.
 
 
 \section{Introduction}
 
 
 \section{Introduction}
-Polynomials are mathematical algebraic structures used in science and engineering to capture physical phenomena and to express any outcome in the form of a function of some unknown variables. Formally speaking,  a polynomial $p(x)$ of degree \textit{n} having $n$ coefficients in the complex plane \textit{C} is :
+Polynomials are mathematical algebraic structures that play an important role in science and engineering by capturing physical phenomena and by expressing any outcome as a function of some unknown variables. Formally speaking,  a polynomial $p(x)$ of degree \textit{n} having $n$ coefficients in the complex plane \textit{C} is :
 %%\begin{center}
 \begin{equation}
      {\Large p(x)=\sum_{i=0}^{n}{a_{i}x^{i}}}.
 \end{equation}
 %%\end{center}
 
 %%\begin{center}
 \begin{equation}
      {\Large p(x)=\sum_{i=0}^{n}{a_{i}x^{i}}}.
 \end{equation}
 %%\end{center}
 
-The root finding problem consists in finding the values of all the $n$ values of the variable $x$ for which \textit{p(x)} is nullified. Such values are called zeros of $p$. If zeros are $\alpha_{i},\textit{i=1,...,n}$ the $p(x)$ can be written as :
+The root finding problem consists in finding the values of all the $n$ different values of the variable $x$ for which \textit{p(x)} is null. Such values are called zeros of $p$. If zeros are $\alpha_{i},\textit{i=1,...,n}$ then $p(x)$ can be written as :
 \begin{equation}
      {\Large p(x)=a_{n}\prod_{i=1}^{n}(x-\alpha_{i}), a_{0} a_{n}\neq 0}.
 \end{equation}
 
 \begin{equation}
      {\Large p(x)=a_{n}\prod_{i=1}^{n}(x-\alpha_{i}), a_{0} a_{n}\neq 0}.
 \end{equation}
 
-The problem of finding the roots of polynomials is encountered in different applications. Most of the numerical methods that deal with this problem are simultaneous ones. These methods start from the initial approximations of all the roots of the polynomial and give a sequence of approximations that converge to the roots of the polynomial. The first method of this group is Durand-Kerner method:
+The problem of finding the roots of polynomials can be encountered in numerous applications. Most of the numerical methods that deal with this problem are simultaneous ones, i.e that find concurrently all of $n$ zeroes. These methods start from the initial approximations of all the roots of the polynomial and give a sequence of approximations that converge to the roots of the polynomial. The first method of this group is Durand-Kerner method:
 \begin{equation}
 \label{DK}
  DK: z_i^{k+1}=z_{i}^{k}-\frac{P(z_i^{k})}{\prod_{i\neq j}(z_i^{k}-z_j^{k})},   i = 1, . . . , n,
 \begin{equation}
 \label{DK}
  DK: z_i^{k+1}=z_{i}^{k}-\frac{P(z_i^{k})}{\prod_{i\neq j}(z_i^{k}-z_j^{k})},   i = 1, . . . , n,
@@ -440,15 +442,15 @@ point $z$.
 %Aberth, Ehrlich and Farmer-Loizou~\cite{Loizou83} have proved that
 %the Ehrlich-Aberth method (EA) has a cubic order of convergence for simple roots whereas the Durand-Kerner has a quadratic order of %convergence.
 
 %Aberth, Ehrlich and Farmer-Loizou~\cite{Loizou83} have proved that
 %the Ehrlich-Aberth method (EA) has a cubic order of convergence for simple roots whereas the Durand-Kerner has a quadratic order of %convergence.
 
-The main problem of the simultaneous methods is that the necessary time needed for the convergence is increased with the increasing of the degree of the polynomial. Many authors have treated the problem of implementation of simultaneous methods in parallel. Freeman [10] implemented and compared DK, EA and another method of the fourth order proposed by Farmer
+The main problem of the simultaneous methods is that the necessary time needed for the convergence is increased with the increasing of the degree of the polynomial. Many authors have treated the problem of implementing  simultaneous methods in parallel. Freeman [10] implemented and compared DK, EA and another method of the fourth order proposed by Farmer
 and Loizou [9], on a 8-processor linear chain, for polynomials of degree up to 8.
 The third method often diverges, but the first two methods have speed-up equal to 5.5. Later, Freeman and Bane [11] considered asynchronous algorithms, in which each processor continues to update its approximations even though the latest values of other $z^{k}_{i}$ have not been received from the other processors, in contrast with synchronous algorithms where it would wait those values before
 and Loizou [9], on a 8-processor linear chain, for polynomials of degree up to 8.
 The third method often diverges, but the first two methods have speed-up equal to 5.5. Later, Freeman and Bane [11] considered asynchronous algorithms, in which each processor continues to update its approximations even though the latest values of other $z^{k}_{i}$ have not been received from the other processors, in contrast with synchronous algorithms where it would wait those values before
-making a new iteration. Couturier and al. [12] proposed two methods of parallelization for a shared memory architecture with \textit{OpenMP} and for distributed memory one with \textit{MPI}. They were able to compute the roots of sparse polynomials of degree 10,000 in 116 seconds with \textit{OpenMP} and 135 seconds with \textit{MPI} only 8 personal computers and 2 communications per iteration. Comparing to the sequential implementation where it takes up to 3,300 seconds to obtain the same results, the authors show an interesting speedup.
+making a new iteration. Couturier and al. [12] proposed two methods of parallelization for a shared memory architecture with \textit{OpenMP} and for distributed memory one with \textit{MPI}. They were able to compute the roots of sparse polynomials of degree 10,000 in 116 seconds with \textit{OpenMP} and 135 seconds with \textit{MPI} only by using 8 personal computers and 2 communications per iteration. Comparing to the sequential implementation where it takes up to 3,300 seconds to obtain the same results, the authors show an interesting speedup.
 
 
-Very few works had been performed since this last work until the appearing of the Compute Unified Device Architecture (CUDA) [13], a parallel computing platform and a programming model invented by NVIDIA. The computing power of GPUs (Graphics Processing Unit) has exceeded that of CPUs. However, CUDA adopts a totally new computing architecture to use the hardware resources provided by GPU in order to offer a stronger computing ability to the massive data computing. Ghidouche and al [14] proposed an implementation of the Durand-Kerner method on GPU. Their main result showed that a parallel CUDA implementation is about 10 times faster than the sequential implementation on a single CPU for sparse polynomials of degree 48,000.
+Very few work had been performed since then until the appearing of the Compute Unified Device Architecture (CUDA) [13], a parallel computing platform and a programming model invented by NVIDIA. The computing power of GPUs (Graphics Processing Unit) has exceeded that of CPUs. However, CUDA adopts a totally new computing architecture to use the hardware resources provided by GPU in order to offer a stronger computing ability to the massive data computing. Ghidouche and al [14] proposed an implementation of the Durand-Kerner method on GPU. Their main result showed that a parallel CUDA implementation is about 10 times faster than the sequential implementation on a single CPU for sparse polynomials of degree 48,000.
 
 
-Finding polynomial roots rapidly and accurately is the main objective of our work. In this paper we propose the parallelization of Ehrlich-Aberth method using a parallel programming paradigms (OpenMP, MPI) on GPUs. We consider two architectures: Shared memory with OpenMP API based on threads from the same system process, which each thread is attached to one GPU and after the various memory allocation, each thread throws its part of calculation ( to do this you must first load on the GPU required data and after Suddenly repatriate the result on the host). Distributed memory with MPI: The MPI library is often used for parallel programming [11] in
-cluster systems because it is a message-passing programming language. Each GPU are attached to one process MPI, and a loop is in charge of the distribution of tasks between the MPI processes. this solution can be used on one GPU, or executed on a distributed cluster of GPUs, employing the Message Passing Interface (MPI) to communicate between separate CUDA cards. This solution permits scaling of the problem size to larger classes than would be possible on a single device and demonstrates the performance which users might expect from future
+Finding polynomial roots rapidly and accurately is the main objective of our work. In this paper we propose the parallelization of Ehrlich-Aberth method using parallel programming paradigms (OpenMP, MPI) on GPUs. We consider two architectures: shared memory with OpenMP API and distributed memory MPI API. The first approach is based on threads from the same system process, with each thread attached to one GPU and after the various memory allocations, each thread launches its part of computations. To do this we must first load on the GPU required data and after the computations are carried, repatriate the result on the host. The second approach i.e distributed memory with MPI relies on the MPI library which is often used for parallel programming [11] in
+cluster systems because it is a message-passing programming language. Each GPU is attached to one MPI process, and a loop is in charge of the distribution of tasks between the MPI processes. This solution can be used on one GPU, or executed on a distributed cluster of GPUs, employing the Message Passing Interface (MPI) to communicate between separate CUDA cards. This solution permits scaling of the problem size to larger classes than would be possible on a single device and demonstrates the performance which users might expect from future
 HPC architectures where accelerators are deployed. 
  
 This paper is organized as follows, in section 2 we recall the Ehrlich-Aberth method. In section 3 we present EA algorithm on single GPU. In section 4 we propose the EA algorithm implementation on MGPU for (OpenMP-CUDA) approach and (MPI-CUDA) approach. In section 5 we present our experiments and discus it. Finally, Section~\ref{sec6} concludes this paper and gives some hints for future research directions in this topic.
 HPC architectures where accelerators are deployed. 
  
 This paper is organized as follows, in section 2 we recall the Ehrlich-Aberth method. In section 3 we present EA algorithm on single GPU. In section 4 we propose the EA algorithm implementation on MGPU for (OpenMP-CUDA) approach and (MPI-CUDA) approach. In section 5 we present our experiments and discus it. Finally, Section~\ref{sec6} concludes this paper and gives some hints for future research directions in this topic.
@@ -456,29 +458,29 @@ This paper is organized as follows, in section 2 we recall the Ehrlich-Aberth me
  
 \section{Parallel Programmings Model}
  
  
 \section{Parallel Programmings Model}
  
-\subsection{OpenMP}%L'article en anglais Multi-GPU and multi-CPU accelerated FDTD scheme for vibroacoustic applications 
-Open Multi-Processing (OpenMP) is a shared memory architecture API that provides multi thread capacity [22]. OpenMP is
+\subsection{OpenMP}
+Open Multi-Processing (OpenMP) is a shared memory architecture API that provides multi thread capacity~\cite{openmp13}. OpenMP is
 a portable approach for parallel programming on shared memory systems based on compiler directives, that can be included in order
 to parallelize a loop. In this way, a set of loops can be distributed along the different threads that will access to different data allo-
 cated in local shared memory. One of the advantages of OpenMP is its global view of application memory address space that allows relatively fast development of parallel applications with easier maintenance. However, it is often difficult to get high rates of
 performance in large scale applications. Although, in OpenMP a usage of threads ids and managing data explicitly as done in an MPI
 code can be considered, it defeats the advantages of OpenMP.
 
 a portable approach for parallel programming on shared memory systems based on compiler directives, that can be included in order
 to parallelize a loop. In this way, a set of loops can be distributed along the different threads that will access to different data allo-
 cated in local shared memory. One of the advantages of OpenMP is its global view of application memory address space that allows relatively fast development of parallel applications with easier maintenance. However, it is often difficult to get high rates of
 performance in large scale applications. Although, in OpenMP a usage of threads ids and managing data explicitly as done in an MPI
 code can be considered, it defeats the advantages of OpenMP.
 
-\subsection{OpenMP} %L'article en Français Programmation multiGPU – OpenMP versus MPI
-OpenMP is a shared memory programming API based on threads from
-the same system process. Designed for multiprocessor shared memory UMA or
-NUMA [10], it relies on the execution model SPMD ( Single Program, Multiple Data Stream )
-where the thread "master" and threads "slaves" asynchronously execute their codes
-communicate / synchronize via shared memory [7]. It also helps to build
-the loop parallelism and is very suitable for an incremental code parallelization
-Sequential natively. Threads share some or all of the available memory and can
-have private memory areas [6].
-
-\subsection{MPI} %L'article en Français Programmation multiGPU – OpenMP versus MPI
- The library MPI allows to use a distributed memory architecture. The various processes have their own environment of execution and execute their codes in a asynchronous way, according to the model MIMD (Multiple Instruction streams, Multiple Dated streams); they communicate and synchronize by exchanges of messages [17]. MPI messages are explicitly sent, while the exchanges are implicit within the framework of a programming multi-thread (OpenMP/Pthreads).
+%\subsection{OpenMP} %L'article en Français Programmation multiGPU – OpenMP versus MPI
+%OpenMP is a shared memory programming API based on threads from
+%the same system process. Designed for multiprocessor shared memory UMA or
+%NUMA [10], it relies on the execution model SPMD ( Single Program, Multiple Data Stream )
+%where the thread "master" and threads "slaves" asynchronously execute their codes
+%communicate / synchronize via shared memory [7]. It also helps to build
+%the loop parallelism and is very suitable for an incremental code parallelization
+%Sequential natively. Threads share some or all of the available memory and can
+%have private memory areas [6].
+
+\subsection{MPI} 
+ The library MPI allows to use a distributed memory architecture. The various processes have their own environment of execution and execute their codes in a asynchronous way, according to the model MIMD (Multiple Instruction streams, Multiple Dated streams); they communicate and synchronize by exchanges of messages~\cite{Peter96}. MPI messages are explicitly sent, while the exchanges are implicit within the framework of a programming multi-thread (OpenMP/Pthreads).
  
 \subsection{CUDA}%L'article en anglais Multi-GPU and multi-CPU accelerated FDTD scheme for vibroacoustic applications
  
 \subsection{CUDA}%L'article en anglais Multi-GPU and multi-CPU accelerated FDTD scheme for vibroacoustic applications
- CUDA (an acronym for Compute Unified Device Architecture) is a parallel computing architecture developed by NVIDIA [28]. The
+ CUDA (an acronym for Compute Unified Device Architecture) is a parallel computing architecture developed by NVIDIA~\cite{NVIDIA12}. The
 unit of execution in CUDA is called a thread. Each thread executes the kernel by the streaming processors in parallel. In CUDA,
 a group of threads that are executed together is called thread blocks, and the computational grid consists of a grid of thread
 blocks. Additionally, a thread block can use the shared memory on a single multiprocessor as while as the grid executes a single
 unit of execution in CUDA is called a thread. Each thread executes the kernel by the streaming processors in parallel. In CUDA,
 a group of threads that are executed together is called thread blocks, and the computational grid consists of a grid of thread
 blocks. Additionally, a thread block can use the shared memory on a single multiprocessor as while as the grid executes a single
@@ -492,6 +494,91 @@ We introduced three paradigms of parallel programming. Our objective consist to
 
 \section{The EA algorithm on single GPU}
 \subsection{the EA method}
 
 \section{The EA algorithm on single GPU}
 \subsection{the EA method}
+
+A cubically convergent iteration method to find zeros of
+polynomials was proposed by O. Aberth~\cite{Aberth73}. The
+Ehrlich-Aberth method contains 4 main steps, presented in what
+follows.
+
+%The Aberth method is a purely algebraic derivation. 
+%To illustrate the derivation, we let $w_{i}(z)$ be the product of linear factors 
+
+%\begin{equation}
+%w_{i}(z)=\prod_{j=1,j \neq i}^{n} (z-x_{j})
+%\end{equation}
+
+%And let a rational function $R_{i}(z)$ be the correction term of the
+%Weistrass method~\cite{Weierstrass03}
+
+%\begin{equation}
+%R_{i}(z)=\frac{p(z)}{w_{i}(z)} , i=1,2,...,n.
+%\end{equation}
+
+%Differentiating the rational function $R_{i}(z)$ and applying the
+%Newton method, we have:
+
+%\begin{equation}
+%\frac{R_{i}(z)}{R_{i}^{'}(z)}= \frac{p(z)}{p^{'}(z)-p(z)\frac{w_{i}(z)}{w_{i}^{'}(z)}}= \frac{p(z)}{p^{'}(z)-p(z) \sum _{j=1,j \neq i}^{n}\frac{1}{z-x_{j}}}, i=1,2,...,n
+%\end{equation}
+%where R_{i}^{'}(z)is the rational function derivative of F evaluated in the point z 
+%Substituting $x_{j}$ for $z_{j}$ we obtain the Aberth iteration method.% 
+
+
+\subsubsection{Polynomials Initialization}
+The initialization of a polynomial $p(z)$ is done by setting each of the $n$ complex coefficients $a_{i}$:
+
+\begin{equation}
+\label{eq:SimplePolynome}
+  p(z)=\sum{a_{i}z^{n-i}} , a_{n} \neq 0,a_{0}=1, a_{i}\subset C
+\end{equation}
+
+
+\subsubsection{Vector $Z^{(0)}$ Initialization}
+\label{sec:vec_initialization}
+As for any iterative method, we need to choose $n$ initial guess points $z^{0}_{i}, i = 1, . . . , n.$
+The initial guess is very important since the number of steps needed by the iterative method to reach
+a given approximation strongly depends on it.
+In~\cite{Aberth73} the Ehrlich-Aberth iteration is started by selecting $n$
+equi-spaced points on a circle of center 0 and radius r, where r is
+an upper bound to the moduli of the zeros. Later, Bini and al.~\cite{Bini96}
+performed this choice by selecting complex numbers along different
+circles which relies on the result of~\cite{Ostrowski41}.
+
+\begin{equation}
+\label{eq:radiusR}
+%%\begin{align}
+\sigma_{0}=\frac{u+v}{2};u=\frac{\sum_{i=1}^{n}u_{i}}{n.max_{i=1}^{n}u_{i}};
+v=\frac{\sum_{i=0}^{n-1}v_{i}}{n.min_{i=0}^{n-1}v_{i}};\\
+%%\end{align}
+\end{equation}
+Where:
+\begin{equation}
+u_{i}=2.|a_{i}|^{\frac{1}{i}};
+v_{i}=\frac{|\frac{a_{n}}{a_{i}}|^{\frac{1}{n-i}}}{2}.
+\end{equation}
+
+\subsubsection{Iterative Function}
+The operator used by the Aberth method is corresponding to the
+following equation~\ref{Eq:EA} which will enable the convergence towards
+polynomial solutions, provided all the roots are distinct.
+
+%Here we give a second form of the iterative function used by the Ehrlich-Aberth method: 
+
+\begin{equation}
+\label{Eq:EA}
+EA: z^{k+1}_{i}=z_{i}^{k}-\frac{\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}}
+{1-\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}\sum_{j=1,j\neq i}^{j=n}{\frac{1}{(z_{i}^{k}-z_{j}^{k})}}}, i=1,. . . .,n
+\end{equation}
+
+\subsubsection{Convergence Condition}
+The convergence condition determines the termination of the algorithm. It consists in stopping the iterative function  when the roots are sufficiently stable. We consider that the method converges sufficiently when:
+
+\begin{equation}
+\label{eq:Aberth-Conv-Cond}
+\forall i \in [1,n];\vert\frac{z_{i}^{k}-z_{i}^{k-1}}{z_{i}^{k}}\vert<\xi
+\end{equation}
+
+
 %\begin{figure}[htbp]
 %\centering
  % \includegraphics[angle=-90,width=0.5\textwidth]{EA-Algorithm}
 %\begin{figure}[htbp]
 %\centering
  % \includegraphics[angle=-90,width=0.5\textwidth]{EA-Algorithm}
@@ -499,9 +586,11 @@ We introduced three paradigms of parallel programming. Our objective consist to
 %\label{fig:03}
 %\end{figure}
 
 %\label{fig:03}
 %\end{figure}
 
-the Ehrlich-Aberth method is an iterative  method, contain 4 steps, start from the initial approximations of all the
-roots of the polynomial,the second step initialize the solution vector $Z$ using the Guggenheimer method to assure the distinction of the initial vector roots, than in step 3 we apply the the iterative function based on the Newton's method and Weiestrass operator[...,...], wich will make it possible to converge to the roots solution, provided that all the root are different. At the end of each application of the iterative function, a stop condition is verified consists in stopping the iterative process when the whole of the modules of the roots
-are lower than a fixed value $ε$ 
+%the Ehrlich-Aberth method is an iterative  method, contain 4 steps, start from the initial approximations of all the
+%roots of the polynomial,the second step initialize the solution vector $Z$ using the Guggenheimer method to assure the distinction of the initial vector roots, than in step 3 we apply the the iterative function based on the Newton's method and Weiestrass operator[...,...], wich will make it possible to converge to the roots solution, provided that all the root are different. At the end of each application of the iterative function, a stop condition is verified consists in stopping the iterative process when the whole of the modules of the roots
+%are lower than a fixed value $ε$ 
+
+
 \subsection{EA parallel implementation on CUDA}
 Like any parallel code, a GPU parallel implementation first
 requires to determine the sequential tasks and the
 \subsection{EA parallel implementation on CUDA}
 Like any parallel code, a GPU parallel implementation first
 requires to determine the sequential tasks and the
@@ -538,7 +627,7 @@ Algorithm~\ref{alg2-cuda} shows a sketch of the Ehrlich-Aberth method using CUDA
 
 \begin{enumerate}
 \begin{algorithm}[htpb]
 
 \begin{enumerate}
 \begin{algorithm}[htpb]
-\label{alg2-cuda}
+\label{alg1-cuda}
 %\LinesNumbered
 \caption{CUDA Algorithm to find roots with the Ehrlich-Aberth method}
 
 %\LinesNumbered
 \caption{CUDA Algorithm to find roots with the Ehrlich-Aberth method}
 
@@ -547,7 +636,7 @@ Algorithm~\ref{alg2-cuda} shows a sketch of the Ehrlich-Aberth method using CUDA
 
 \KwOut {$Z$ (Solution root's vector), $ZPrec$ (Previous solution root's vector)}
 
 
 \KwOut {$Z$ (Solution root's vector), $ZPrec$ (Previous solution root's vector)}
 
-\BlankLine
+%\BlankLine
 
 \item Initialization of the of P\;
 \item Initialization of the of Pu\;
 
 \item Initialization of the of P\;
 \item Initialization of the of Pu\;
@@ -695,6 +784,14 @@ to $10^{-7}$.
 %CPUs versus on GPUs.
 The initialization values of the vector solution
 of the methods are given in %Section~\ref{sec:vec_initialization}.
 %CPUs versus on GPUs.
 The initialization values of the vector solution
 of the methods are given in %Section~\ref{sec:vec_initialization}.
+
+\subsection{Test with Multi-GPU (CUDA OpenMP) approach}
+
+In this part we performed  a set of experiments on Multi-GPU (CUDA OpenMP) approach for full and sparse polynomials of different degrees, compare it with Single GPU (CUDA).
+ \subsubsection{Execution times in seconds of the Ehrlich-Aberth method for solving sparse polynomials on GPUs using shared memory paradigm with OpenMP}
+ In this experiments we report the execution time of the EA algorithm, on single GPU and Multi-GPU with (2,3,4) GPUs, for different sparse polynomial degrees ranging from 100,000 to 1,400,000
+
 \begin{figure}[htbp]
 \centering
   \includegraphics[angle=-90,width=0.5\textwidth]{Sparse_omp}
 \begin{figure}[htbp]
 \centering
   \includegraphics[angle=-90,width=0.5\textwidth]{Sparse_omp}
@@ -702,12 +799,11 @@ of the methods are given in %Section~\ref{sec:vec_initialization}.
 \label{fig:01}
 \end{figure}
 
 \label{fig:01}
 \end{figure}
 
-\begin{figure}[htbp]
-\centering
-  \includegraphics[angle=-90,width=0.5\textwidth]{Sparse_mpi}
-\caption{Execution times in seconds of the Ehrlich-Aberth method for solving sparse polynomials on GPUs using distributed memory paradigm with MPI}
-\label{fig:02}
-\end{figure}
+This figure~\ref{fig:01} shows that (CUDA OpenMP) Multi-GPU approach reduce the execution time up to the scale 100 whereas single GPU is of scale 1000 for polynomial who exceed 1,000,000. It shows the advantage to use OpenMP parallel paradigm  to connect the performances of several GPUs and solve a  polynomial of high degrees.   
+
+\subsubsection{Execution times in seconds of the Ehrlich-Aberth method for solving full polynomials on GPUs using shared memory paradigm with OpenMP}
+
+This experiments shows the execution time of the EA algorithm, on single GPU (CUDA) and Multi-GPU (CUDA OpenMP) approach for full polynomials of degrees ranging from 100,000 to 1,400,000
 
 \begin{figure}[htbp]
 \centering
 
 \begin{figure}[htbp]
 \centering
@@ -716,6 +812,24 @@ of the methods are given in %Section~\ref{sec:vec_initialization}.
 \label{fig:03}
 \end{figure}
 
 \label{fig:03}
 \end{figure}
 
+The second test with full polynomial shows a very important saving of time, for a polynomial of degrees 1,4M (CUDA OpenMP) approach with 4 GPUs compute and solve it 4 times as fast as single GPU. We notice that curves are positioned one below the other one, more the number of used GPUs increases more the execution time decreases.
+
+\subsection{Test with Multi-GPU (CUDA MPI) approach}
+In this part we perform a set of experiment to compare Multi-GPU (CUDA MPI) approach with single GPU, for solving full and sparse polynomials of degrees ranging from 100,000 to 1,400,000.
+
+\subsubsection{Execution times in seconds of the Ehrlich-Aberth method for solving sparse polynomials on GPUs using distributed memory paradigm with MPI}
+
+\begin{figure}[htbp]
+\centering
+  \includegraphics[angle=-90,width=0.5\textwidth]{Sparse_mpi}
+\caption{Execution times in seconds of the Ehrlich-Aberth method for solving sparse polynomials on GPUs using distributed memory paradigm with MPI}
+\label{fig:02}
+\end{figure}
+~\\
+This figure shows 4 curves of execution time of EA algorithm, a curve with single GPU, 3 curves with Multi-GPUs (2, 3, 4) GPUs. We see clearly that the curve with single GPU is above the other curves, which shows consumption in execution time compared to the Multi-GPU. We can see the approach Multi-GPU (CUDA MPI) reduces the execution time up to the scale 100 for polynomial of degrees more than 1,000,000 whereas single GPU is of the scale 1000.
+\\
+\subsubsection{Execution times in seconds of the Ehrlich-Aberth method for solving full polynomials on GPUs using distributed memory paradigm with MPI}
+
 \begin{figure}[htbp]
 \centering
   \includegraphics[angle=-90,width=0.5\textwidth]{Full_mpi}
 \begin{figure}[htbp]
 \centering
   \includegraphics[angle=-90,width=0.5\textwidth]{Full_mpi}
@@ -849,7 +963,7 @@ of the methods are given in %Section~\ref{sec:vec_initialization}.
 
 
 \section{Conclusion}
 
 
 \section{Conclusion}
-The conclusion goes here.
+The conclusion goes here~\cite{IEEEexample:bibtexdesign}.
 
 
 
 
 
 
@@ -885,17 +999,24 @@ The authors would like to thank...
 %\bibliographystyle{IEEEtran}
 % argument is your BibTeX string definitions and bibliography database(s)
 %\bibliography{IEEEabrv,../bib/paper}
 %\bibliographystyle{IEEEtran}
 % argument is your BibTeX string definitions and bibliography database(s)
 %\bibliography{IEEEabrv,../bib/paper}
+%\bibliographystyle{./IEEEtran}
+\bibliography{mybibfile}
+
 %
 % <OR> manually copy in the resultant .bbl file
 % set second argument of \begin to the number of references
 % (used to reserve space for the reference number labels box)
 %
 % <OR> manually copy in the resultant .bbl file
 % set second argument of \begin to the number of references
 % (used to reserve space for the reference number labels box)
-\begin{thebibliography}{1}
+%\begin{thebibliography}{1}
 
 
-\bibitem{IEEEhowto:kopka}
-H.~Kopka and P.~W. Daly, \emph{A Guide to \LaTeX}, 3rd~ed.\hskip 1em plus
-  0.5em minus 0.4em\relax Harlow, England: Addison-Wesley, 1999.
+%\bibitem{IEEEhowto:kopka}
+%H.~Kopka and P.~W. Daly, \emph{A Guide to \LaTeX}, 3rd~ed.\hskip 1em plus
+ % 0.5em minus 0.4em\relax Harlow, England: Addison-Wesley, 1999.
+  
+%\bibitem{IEEEhowto:NVIDIA12} 
+ %NVIDIA Corporation, \textit{Whitepaper NVIDA’s Next Generation CUDATM Compute
+%Architecture: KeplerTM }, 1st ed., 2012.
 
 
-\end{thebibliography}
+%\end{thebibliography}