]> AND Private Git Repository - kahina_paper2.git/blobdiff - paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
ajout de quelques commentaires
[kahina_paper2.git] / paper.tex
index f3b0a91ecf424f18553c01d0c8ba9b25cfc3ec74..b0e76b5ae1d1c798fa5331efe55e9824f8dfbc14 100644 (file)
--- a/paper.tex
+++ b/paper.tex
@@ -427,12 +427,14 @@ Polynomials are mathematical algebraic structures that play an important role in
 \begin{equation}
 p(x)=\sum_{i=0}^{n}{a_ix^i}.
 \end{equation}
 \begin{equation}
 p(x)=\sum_{i=0}^{n}{a_ix^i}.
 \end{equation}
-\LZK{Dans ce cas le polynôme a $n+1$ coefficients !}
+\LZK{Dans ce cas le polynôme a $n+1$ coefficients et non pas $n$!}
 
 The root-finding problem consists in finding the $n$ different values of the unknown variable $x$ for which $p(x)=0$. Such values are called zeros or roots of $p$. If zeros are $\{\alpha_{i}\}_{1\leq i\leq n}$, then $p(x)$ can be written as :
 \begin{equation}
  p(x)=a_n\prod_{i=1}^n(x-\alpha_i), a_0 a_n\neq 0.
 \end{equation}
 
 The root-finding problem consists in finding the $n$ different values of the unknown variable $x$ for which $p(x)=0$. Such values are called zeros or roots of $p$. If zeros are $\{\alpha_{i}\}_{1\leq i\leq n}$, then $p(x)$ can be written as :
 \begin{equation}
  p(x)=a_n\prod_{i=1}^n(x-\alpha_i), a_0 a_n\neq 0.
 \end{equation}
+\LZK{C'est $a_n\neq 0$ (polynôme de degré $n$) et non pas $a_0 a_n\neq 0$, non?}
+\LZK{Est-ce $\alpha_i$ sont les $z_i$ définis dans la suite du papier?}
 
 The problem of finding the roots of polynomials can be encountered in numerous applications. \LZK{A mon avis on peut supprimer cette phrase}
 Most of the numerical methods that deal with the polynomial root-finding problem are simultaneous ones, \textit{i.e.} the iterative methods to find simultaneous approximations of the $n$ polynomial zeros. These methods start from the initial approximations of all $n$ polynomial roots and give a sequence of approximations that converge to the roots of the polynomial. The first method of this group is Durand-Kerner method:
 
 The problem of finding the roots of polynomials can be encountered in numerous applications. \LZK{A mon avis on peut supprimer cette phrase}
 Most of the numerical methods that deal with the polynomial root-finding problem are simultaneous ones, \textit{i.e.} the iterative methods to find simultaneous approximations of the $n$ polynomial zeros. These methods start from the initial approximations of all $n$ polynomial roots and give a sequence of approximations that converge to the roots of the polynomial. The first method of this group is Durand-Kerner method:
@@ -460,6 +462,8 @@ Very few work had been performed since then until the appearing of the Compute U
 
 Finding polynomial roots rapidly and accurately is the main objective of our work. In this paper we propose the parallelization of Ehrlich-Aberth method using two parallel programming paradigms OpenMP and MPI on multi-GPU platforms. We consider two architectures: shared memory and distributed memory computers. The first parallel algorithm is implemented on shared memory computers by using OpenMP API. It is based on threads created from the same system process, such that each thread is attached to one GPU. In this case the communications between GPUs are done by OpenMP threads through shared memory. The second parallel algorithm uses the MPI API, such that each GPU is attached and managed by a MPI process. The GPUs exchange their data by message-passing communications. This latter approach is more used on distributed memory clusters to solve very complex problems that are too large for traditional supercomputers, which are very expensive to build and run.
 \LZK{Cette partie est réécrite. \\ Sinon qu'est ce qui a été fait pour l'accuracy dans ce papier (Finding polynomial roots rapidly and accurately is the main objective of our work.)?}
 
 Finding polynomial roots rapidly and accurately is the main objective of our work. In this paper we propose the parallelization of Ehrlich-Aberth method using two parallel programming paradigms OpenMP and MPI on multi-GPU platforms. We consider two architectures: shared memory and distributed memory computers. The first parallel algorithm is implemented on shared memory computers by using OpenMP API. It is based on threads created from the same system process, such that each thread is attached to one GPU. In this case the communications between GPUs are done by OpenMP threads through shared memory. The second parallel algorithm uses the MPI API, such that each GPU is attached and managed by a MPI process. The GPUs exchange their data by message-passing communications. This latter approach is more used on distributed memory clusters to solve very complex problems that are too large for traditional supercomputers, which are very expensive to build and run.
 \LZK{Cette partie est réécrite. \\ Sinon qu'est ce qui a été fait pour l'accuracy dans ce papier (Finding polynomial roots rapidly and accurately is the main objective of our work.)?}
+
+\LZK{Les contributions ne sont pas définies !!}
  
 %This paper is organized as follows. In Section~\ref{sec2} we recall the Ehrlich-Aberth method. In section~\ref{sec3} we present EA algorithm on single GPU. In section~\ref{sec4} we propose the EA algorithm implementation on Multi-GPU for (OpenMP-CUDA) approach and (MPI-CUDA) approach. In sectioné\ref{sec5} we present our experiments and discus it. Finally, Section~\ref{sec6} concludes this paper and gives some hints for future research directions in this topic.}
 
  
 %This paper is organized as follows. In Section~\ref{sec2} we recall the Ehrlich-Aberth method. In section~\ref{sec3} we present EA algorithm on single GPU. In section~\ref{sec4} we propose the EA algorithm implementation on Multi-GPU for (OpenMP-CUDA) approach and (MPI-CUDA) approach. In sectioné\ref{sec5} we present our experiments and discus it. Finally, Section~\ref{sec6} concludes this paper and gives some hints for future research directions in this topic.}