+%\subsubsection{Polynomials Initialization}
+%The initialization of a polynomial $p(z)$ is done by setting each of the $n$ complex coefficients %$a_{i}$:
+
+%\begin{equation}
+%\label{eq:SimplePolynome}
+% p(z)=\sum{a_{i}z^{n-i}} , a_{n} \neq 0,a_{0}=1, a_{i}\subset C
+%\end{equation}
+
+
+%\subsubsection{Vector $Z^{(0)}$ Initialization}
+%\label{sec:vec_initialization}
+%As for any iterative method, we need to choose $n$ initial guess points $z^{0}_{i}, i = 1, . . . , %n.$
+%The initial guess is very important since the number of steps needed by the iterative method to %reach
+%a given approximation strongly depends on it.
+%In~\cite{Aberth73} the Ehrlich-Aberth iteration is started by selecting $n$
+%equi-distant points on a circle of center 0 and radius r, where r is
+%an upper bound to the moduli of the zeros. Later, Bini and al.~\cite{Bini96}
+%performed this choice by selecting complex numbers along different
+%circles which relies on the result of~\cite{Ostrowski41}.
+
+%\begin{equation}
+%\label{eq:radiusR}
+%%\begin{align}
+%\sigma_{0}=\frac{u+v}{2};u=\frac{\sum_{i=1}^{n}u_{i}}{n.max_{i=1}^{n}u_{i}};
+%v=\frac{\sum_{i=0}^{n-1}v_{i}}{n.min_{i=0}^{n-1}v_{i}};\\
+%%\end{align}
+%\end{equation}
+%Where:
+%\begin{equation}
+%u_{i}=2.|a_{i}|^{\frac{1}{i}};
+%v_{i}=\frac{|\frac{a_{n}}{a_{i}}|^{\frac{1}{n-i}}}{2}.
+%\end{equation}
+
+%\subsubsection{Iterative Function}
+%The operator used by the Aberth method corresponds to the
+%equation~\ref{Eq:EA1}, it enables the convergence towards
+%the polynomials zeros, provided all the roots are distinct.
+
+%Here we give a second form of the iterative function used by the Ehrlich-Aberth method:
+
+%\begin{equation}
+%\label{Eq:EA1}
+%EA: z^{k+1}_{i}=z_{i}^{k}-\frac{\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}}
+%{1-\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}\sum_{j=1,j\neq i}^{j=n}{\frac{1}{(z_{i}^{k}-z_{j}^{k})}}}, %i=1,. . . .,n
+%\end{equation}
+
+%\subsubsection{Convergence Condition}
+%The convergence condition determines the termination of the algorithm. It consists in stopping the %iterative function when the roots are sufficiently stable. We consider that the method converges %sufficiently when:
+
+%\begin{equation}
+%\label{eq:Aberth-Conv-Cond}
+%\forall i \in [1,n];\vert\frac{z_{i}^{k}-z_{i}^{k-1}}{z_{i}^{k}}\vert<\xi
+%\end{equation}