]> AND Private Git Repository - kahina_paper2.git/blobdiff - paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
correction abstract 0
[kahina_paper2.git] / paper.tex
index 6fdcf3aa0993d9c429df7076b39cbe91fc69124f..f40cdc22a2ee5485e855f45e905542ee352e7055 100644 (file)
--- a/paper.tex
+++ b/paper.tex
 % argument is your BibTeX string definitions and bibliography database(s)
 %\bibliography{IEEEabrv,../bib/paper}
 %\bibliographystyle{elsarticle-num}
 % argument is your BibTeX string definitions and bibliography database(s)
 %\bibliography{IEEEabrv,../bib/paper}
 %\bibliographystyle{elsarticle-num}
+
+
+
+
+
+\usepackage[textsize=footnotesize]{todonotes}
+\newcommand{\LZK}[2][inline]{%
+  \todo[color=red!10,#1]{\sffamily\textbf{LZK:} #2}\xspace}
+
+
+
+
+
 \begin{document}
 %
 % paper title
 \begin{document}
 %
 % paper title
@@ -385,7 +398,7 @@ Fax: (888) 555--1212}}
 % As a general rule, do not put math, special symbols or citations
 % in the abstract
 \begin{abstract}
 % As a general rule, do not put math, special symbols or citations
 % in the abstract
 \begin{abstract}
-Finding roots of polynomials is a well-known important but not so very easy problem to solve especially for high degrees.
+Finding roots of polynomials is a well-known important but not so very easy problem to solve especially for high degrees. \LZK{il manque quelque chose dans cette phrase. Proposition: Finding roots of polynomials is a very important part of solving real-life problems but it is not an easy task for polynomials of high degrees.}
 In this paper, we present two different parallel approaches to achieve this gaol for sparse and fully defined polynomials of up to 1.4 billion degree. Our two approaches are based on the well known parallel paradigms of OpenMP and MPI but combined with the novel CUDA GPU technology. Our results show a quasi-linear speedup using up to 4 GPU devices to solve four times faster a polynomial root finding problem. To our knowledge, this is the first paper to present this technology mix to solve such a highly demanding problem in parallel programming.
 
 \end{abstract}
 In this paper, we present two different parallel approaches to achieve this gaol for sparse and fully defined polynomials of up to 1.4 billion degree. Our two approaches are based on the well known parallel paradigms of OpenMP and MPI but combined with the novel CUDA GPU technology. Our results show a quasi-linear speedup using up to 4 GPU devices to solve four times faster a polynomial root finding problem. To our knowledge, this is the first paper to present this technology mix to solve such a highly demanding problem in parallel programming.
 
 \end{abstract}