-This method contains 4 steps. The first step consists in the
-initializing the polynomial.\LZK{Pas compris?? \RC{changé}}.
-The second step initializes the solution vector $Z$ using the
-Guggenheimer method~\cite{Gugg86} to ensure that initial roots are all
-distinct from each other. \LZK{Quelle est la différence entre la 1st
- step et la 2nd step? Que veut dire " to ensure the distinction of
- the initial vector roots"? \RC{reformulé}}
-In step 3, the iterative function based on the Newton's
-method~\cite{newt70} and Weiestrass operator~\cite{Weierstrass03} is
-applied. In our case, the Ehrlich-Aberth is applied as in (\ref{Eq:EA1}).
-Iterations of the EA method will converge to the roots of the
-considered polynomial.\LZK{On ne peut pas expliquer un peu plus
- comment? Donner des formules comment elle se base sur la méthode de
- Newton et de l'opérateur de Weiestrass? \RC{amélioré}}
-\LZK{Elle est où la 4th step??}
-\LZK{Conclusion: Méthode mal présentée et j'ai presque rien compris!
- \RC{après} }
-
-
-In order to stop the iterative function, a stop condition is applied,
-this is the 4th step. This condition checks that all the root modules
-are lower than a fixed value $\epsilon$.
+This method contains 4 steps. The first step consists in the initializing the polynomial. The second step initializes the solution vector $Z$ using the Guggenheimer method~\cite{Gugg86} to ensure that initial roots are all distinct from each other. In step 3, the iterative function based on the Newton's method~\cite{newt70} and Weiestrass operator~\cite{Weierstrass03} is applied. In our case, the Ehrlich-Aberth is applied as in~(\ref{Eq:EA1}). Iterations of the Ehrlich-Aberth method will converge to the roots of the considered polynomial. In order to stop the iterative function, a stop condition is applied, this is the 4th step. This condition checks that all the root modules are lower than a fixed value $\epsilon$.