+We introduced three paradigms of parallel programming. Our objective consists in implementing a root finding polynomial algorithm on multiple GPUs. To this end, it is primordial to know how to manage CUDA contexts of different GPUs. A direct method for controlling the various GPUs is to use as many threads or processes as GPU devices. We can choose the GPU index based on the identifier of OpenMP thread or the rank of the MPI process. Both approaches will be investigated.
+
+\section{The EA algorithm on a single GPU}
+\subsection{The EA method}
+
+A cubically convergent iteration method to find zeros of
+polynomials was proposed by O. Aberth~\cite{Aberth73}. The
+Ehrlich-Aberth (EA is short) method contains 4 main steps, presented in what
+follows.
+
+%The Aberth method is a purely algebraic derivation.
+%To illustrate the derivation, we let $w_{i}(z)$ be the product of linear factors
+
+%\begin{equation}
+%w_{i}(z)=\prod_{j=1,j \neq i}^{n} (z-x_{j})
+%\end{equation}
+
+%And let a rational function $R_{i}(z)$ be the correction term of the
+%Weistrass method~\cite{Weierstrass03}
+
+%\begin{equation}
+%R_{i}(z)=\frac{p(z)}{w_{i}(z)} , i=1,2,...,n.
+%\end{equation}
+
+%Differentiating the rational function $R_{i}(z)$ and applying the
+%Newton method, we have:
+
+%\begin{equation}
+%\frac{R_{i}(z)}{R_{i}^{'}(z)}= \frac{p(z)}{p^{'}(z)-p(z)\frac{w_{i}(z)}{w_{i}^{'}(z)}}= \frac{p(z)}{p^{'}(z)-p(z) \sum _{j=1,j \neq i}^{n}\frac{1}{z-x_{j}}}, i=1,2,...,n
+%\end{equation}
+%where R_{i}^{'}(z)is the rational function derivative of F evaluated in the point z
+%Substituting $x_{j}$ for $z_{j}$ we obtain the Aberth iteration method.%
+
+
+\subsubsection{Polynomials Initialization}
+The initialization of a polynomial $p(z)$ is done by setting each of the $n$ complex coefficients $a_{i}$:
+
+\begin{equation}
+\label{eq:SimplePolynome}
+ p(z)=\sum{a_{i}z^{n-i}} , a_{n} \neq 0,a_{0}=1, a_{i}\subset C
+\end{equation}
+
+
+\subsubsection{Vector $Z^{(0)}$ Initialization}
+\label{sec:vec_initialization}
+As for any iterative method, we need to choose $n$ initial guess points $z^{0}_{i}, i = 1, . . . , n.$
+The initial guess is very important since the number of steps needed by the iterative method to reach
+a given approximation strongly depends on it.
+In~\cite{Aberth73} the Ehrlich-Aberth iteration is started by selecting $n$
+equi-distant points on a circle of center 0 and radius r, where r is
+an upper bound to the moduli of the zeros. Later, Bini and al.~\cite{Bini96}
+performed this choice by selecting complex numbers along different
+circles which relies on the result of~\cite{Ostrowski41}.
+
+\begin{equation}
+\label{eq:radiusR}
+%%\begin{align}
+\sigma_{0}=\frac{u+v}{2};u=\frac{\sum_{i=1}^{n}u_{i}}{n.max_{i=1}^{n}u_{i}};
+v=\frac{\sum_{i=0}^{n-1}v_{i}}{n.min_{i=0}^{n-1}v_{i}};\\
+%%\end{align}
+\end{equation}
+Where:
+\begin{equation}
+u_{i}=2.|a_{i}|^{\frac{1}{i}};
+v_{i}=\frac{|\frac{a_{n}}{a_{i}}|^{\frac{1}{n-i}}}{2}.
+\end{equation}
+
+\subsubsection{Iterative Function}
+The operator used by the Aberth method corresponds to the
+equation~\ref{Eq:EA1}, it enables the convergence towards
+the polynomials zeros, provided all the roots are distinct.
+
+%Here we give a second form of the iterative function used by the Ehrlich-Aberth method:
+
+\begin{equation}
+\label{Eq:EA1}
+EA: z^{k+1}_{i}=z_{i}^{k}-\frac{\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}}
+{1-\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}\sum_{j=1,j\neq i}^{j=n}{\frac{1}{(z_{i}^{k}-z_{j}^{k})}}}, i=1,. . . .,n
+\end{equation}
+
+\subsubsection{Convergence Condition}
+The convergence condition determines the termination of the algorithm. It consists in stopping the iterative function when the roots are sufficiently stable. We consider that the method converges sufficiently when:
+
+\begin{equation}
+\label{eq:Aberth-Conv-Cond}
+\forall i \in [1,n];\vert\frac{z_{i}^{k}-z_{i}^{k-1}}{z_{i}^{k}}\vert<\xi
+\end{equation}
+
+
+%\begin{figure}[htbp]
+%\centering
+ % \includegraphics[angle=-90,width=0.5\textwidth]{EA-Algorithm}
+%\caption{The Ehrlich-Aberth algorithm on single GPU}
+%\label{fig:03}
+%\end{figure}
+
+%the Ehrlich-Aberth method is an iterative method, contain 4 steps, start from the initial approximations of all the
+%roots of the polynomial,the second step initialize the solution vector $Z$ using the Guggenheimer method to assure the distinction of the initial vector roots, than in step 3 we apply the the iterative function based on the Newton's method and Weiestrass operator[...,...], wich will make it possible to converge to the roots solution, provided that all the root are different. At the end of each application of the iterative function, a stop condition is verified consists in stopping the iterative process when the whole of the modules of the roots
+%are lower than a fixed value $ε$
+