+\subsection{Comparing the CUDA-OpenMP approach and the CUDA-MPI approach}
+
+In the previuos section we saw that both approches are very effective in reducing execution time for sparse as well as full polynomials. At this stage, the interesting question is which approach is better. In the fellowing, we present appropriate experiments comparing the two Multi-GPU approaches to answer the question.
+
+\subsubsection{Solving sparse polynomials}
+In this experiment three sparse polynomials of size 200K, 800K and 1,4M are investigated.
+\begin{figure}[htbp]
+\centering
+ \includegraphics[angle=-90,width=0.5\textwidth]{Sparse}
+\caption{Execution time for solving sparse polynomials of three distinct sizes on multiple GPUs using MPI and OpenMP approaches using Ehrlich-Aberth}
+\label{fig:05}
+\end{figure}
+In Figure~\ref{fig:05} there two curves for each polynomial size : one for the MPI-CUDA and another for the OpenMP. We can see that the results are similar between OpenMP and MPI for the polynomials size of 200K. For the size of 800K, the MPI version is a little slower than the OpenMP approach but for for the 1,4M size, there is a slight advantage for the MPI version.
+
+\subsubsection{Solving full polynomials}
+\begin{figure}[htbp]
+\centering
+ \includegraphics[angle=-90,width=0.5\textwidth]{Full}
+\caption{Execution time for solving full polynomials of three distinct sizes on multiple GPUs using MPI and OpenMP approaches using Ehrlich-Aberth}
+\label{fig:06}
+\end{figure}
+In Figure~\ref{fig:06}, we can see that when it comes to full polynomials, both approaches are almost equivalent.
+
+\subsubsection{Solving sparse and full polynomials of the same size with CUDA-MPI}
+In this experiment we compare the execution time of the EA algorithm according to the number of GPUs for solving sparse and full polynomials on Multi-GPU using MPI. We chose three sparse and full polynomials of size 200K, 800K and 1,4M.
+\begin{figure}[htbp]
+\centering
+ \includegraphics[angle=-90,width=0.5\textwidth]{MPI}
+\caption{Execution time for solving sparse and full polynomials of three distinct sizes on multiple GPUs using MPI}
+\label{fig:07}
+\end{figure}
+in figure ~\ref{fig:07} we can see that CUDA-MPI can solve sparse and full polynomials of high degrees, the execution time with sparse polynomial are very low comparing to full polynomials. with sparse polynomials the number of monomial are reduce, consequently the number of operation are reduce than the execution time decrease.
+
+\subsubsection{Solving sparse and full polynomials of the same size with CUDA-OpenMP}