]> AND Private Git Repository - kahina_paper2.git/blobdiff - paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
relecture section III B
[kahina_paper2.git] / paper.tex
index a79078793cff82c66646820763a5abd84bd76fdc..a6cb8a4bdd3ed1e74bbe86dc5805d2d3e82220b5 100644 (file)
--- a/paper.tex
+++ b/paper.tex
@@ -682,10 +682,7 @@ than a fixed value $\epsilon$.
 \LZK{On ne dit pas plutôt "the relative errors" à la place de "root modules"? Raph nous confirmera quelle critère d'arrêt a utilisé.}
 
 \subsection{Improving Ehrlich-Aberth method}
 \LZK{On ne dit pas plutôt "the relative errors" à la place de "root modules"? Raph nous confirmera quelle critère d'arrêt a utilisé.}
 
 \subsection{Improving Ehrlich-Aberth method}
-With high degree polynomials, the Ehrlich-Aberth method suffers from
-floating point overflows due to the mantissa of floating points
-representations. This induces errors in the computation of $p(z)$ when
-$z$ is large.
+With high degree polynomials, the Ehrlich-Aberth method suffers from floating point overflows due to the mantissa of floating points representations. This induces errors in the computation of $p(z)$ when $z$ is large.
  
 %Experimentally, it is very difficult to solve polynomials with the Ehrlich-Aberth method and have roots which except the circle of unit, represented by the radius $r$ evaluated as: 
 
  
 %Experimentally, it is very difficult to solve polynomials with the Ehrlich-Aberth method and have roots which except the circle of unit, represented by the radius $r$ evaluated as: 
 
@@ -702,28 +699,23 @@ In order to solve this problem, we propose to modify the iterative
 function by using the logarithm and the exponential of a complex and
 we propose a new version of the Ehrlich-Aberth method.  This method
 allows us to exceed the computation of the polynomials of degree
 function by using the logarithm and the exponential of a complex and
 we propose a new version of the Ehrlich-Aberth method.  This method
 allows us to exceed the computation of the polynomials of degree
-100,000 and to reach a degree up to more than 1,000,000. This new
-version of the Ehrlich-Aberth method with exponential and logarithm is
-defined as follows:
+100,000 and to reach a degree up to more than 1,000,000. The reformulation of the iteration~(\ref{Eq:EA1}) of the Ehrlich-Aberth method with exponential and logarithm is defined as follows, for $i=1,\dots,n$:
 
 \begin{equation}
 \label{Log_H2}
 
 \begin{equation}
 \label{Log_H2}
-z^{k+1}_{i}=z_{i}^{k}-\exp \left(\ln \left(
-p(z_{i}^{k})\right)-\ln\left(p'(z^{k}_{i})\right)- \ln\left(1-Q(z^{k}_{i})\right)\right),
+z^{k+1}_i = z_i^k - \exp(\ln(p(z_i^k)) - \ln(p'(z^k_i)) - \ln(1-Q(z^k_i))),
 \end{equation}
 
 where:
 
 \end{equation}
 
 where:
 
-\begin{eqnarray}
+\begin{equation}
 \label{Log_H1}
 \label{Log_H1}
-Q(z^{k}_{i})=\exp\left( \ln (p(z^{k}_{i}))-\ln(p'(z^{k}_{i}))+\ln \left(
-\sum_{i\neq j}^{n}\frac{1}{z^{k}_{i}-z^{k}_{j}}\right)\right) \nonumber  \\
-i=1,...,n  
-\end{eqnarray}
+Q(z^k_i) = \exp(\ln(p(z^k_i)) - \ln(p'(z^k_i)) + \ln(\sum_{i\neq j}^n\frac{1}{z^k_i-z^k_j})).
+\end{equation}
 
 
 %We propose to use the logarithm and the exponential of a complex in order to compute the power at a high exponent. 
 
 
 %We propose to use the logarithm and the exponential of a complex in order to compute the power at a high exponent. 
-Using the logarithm  and the exponential operators, we can replace any multiplications and divisions with additions and subtractions. Consequently, computations manipulate lower absolute values~\cite{Karimall98}.
+Using the logarithm  and the exponential operators, we can replace any multiplications and divisions with additions and subtractions. Consequently, computations manipulate lower absolute values~\cite{Karimall98}. \LZK{Je n'ai pas compris cette dernière phrase?}
 
 %This problem was discussed earlier in~\cite{Karimall98} for the Durand-Kerner method. The authors
 %propose to use the logarithm and the exponential of a complex in order to compute the power at a high exponent. Using the logarithm  and the exponential operators, we can replace any multiplications and divisions with additions and subtractions. Consequently, computations manipulate lower absolute values and the roots for large polynomial degrees can be looked for successfully~\cite{Karimall98}.
 
 %This problem was discussed earlier in~\cite{Karimall98} for the Durand-Kerner method. The authors
 %propose to use the logarithm and the exponential of a complex in order to compute the power at a high exponent. Using the logarithm  and the exponential operators, we can replace any multiplications and divisions with additions and subtractions. Consequently, computations manipulate lower absolute values and the roots for large polynomial degrees can be looked for successfully~\cite{Karimall98}.