]> AND Private Git Repository - kahina_paper2.git/blobdiff - paper.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
remove Full_mpi.pdf Full_mpivsomp.pdf Full_openmp.pdf MPI_mpivsomp.pdf OMP_mpivsomp...
[kahina_paper2.git] / paper.tex
index d35e62fcf6d62331a2cd9ccc43ff200254959420..50049341b08525195905306165af2b393533122d 100644 (file)
--- a/paper.tex
+++ b/paper.tex
@@ -1 +1,906 @@
-blabla
+
+%% bare_conf.tex
+%% V1.4b
+%% 2015/08/26
+%% by Michael Shell
+%% See:
+%% http://www.michaelshell.org/
+%% for current contact information.
+%%
+%% This is a skeleton file demonstrating the use of IEEEtran.cls
+%% (requires IEEEtran.cls version 1.8b or later) with an IEEE
+%% conference paper.
+%%
+%% Support sites:
+%% http://www.michaelshell.org/tex/ieeetran/
+%% http://www.ctan.org/pkg/ieeetran
+%% and
+%% http://www.ieee.org/
+
+%%*************************************************************************
+%% Legal Notice:
+%% This code is offered as-is without any warranty either expressed or
+%% implied; without even the implied warranty of MERCHANTABILITY or
+%% FITNESS FOR A PARTICULAR PURPOSE! 
+%% User assumes all risk.
+%% In no event shall the IEEE or any contributor to this code be liable for
+%% any damages or losses, including, but not limited to, incidental,
+%% consequential, or any other damages, resulting from the use or misuse
+%% of any information contained here.
+%%
+%% All comments are the opinions of their respective authors and are not
+%% necessarily endorsed by the IEEE.
+%%
+%% This work is distributed under the LaTeX Project Public License (LPPL)
+%% ( http://www.latex-project.org/ ) version 1.3, and may be freely used,
+%% distributed and modified. A copy of the LPPL, version 1.3, is included
+%% in the base LaTeX documentation of all distributions of LaTeX released
+%% 2003/12/01 or later.
+%% Retain all contribution notices and credits.
+%% ** Modified files should be clearly indicated as such, including  **
+%% ** renaming them and changing author support contact information. **
+%%*************************************************************************
+
+
+% *** Authors should verify (and, if needed, correct) their LaTeX system  ***
+% *** with the testflow diagnostic prior to trusting their LaTeX platform ***
+% *** with production work. The IEEE's font choices and paper sizes can   ***
+% *** trigger bugs that do not appear when using other class files.       ***                          ***
+% The testflow support page is at:
+% http://www.michaelshell.org/tex/testflow/
+
+
+
+\documentclass[conference]{IEEEtran}
+% Some Computer Society conferences also require the compsoc mode option,
+% but others use the standard conference format.
+%
+% If IEEEtran.cls has not been installed into the LaTeX system files,
+% manually specify the path to it like:
+% \documentclass[conference]{../sty/IEEEtran}
+
+
+
+
+
+% Some very useful LaTeX packages include:
+% (uncomment the ones you want to load)
+
+
+% *** MISC UTILITY PACKAGES ***
+%
+%\usepackage{ifpdf}
+% Heiko Oberdiek's ifpdf.sty is very useful if you need conditional
+% compilation based on whether the output is pdf or dvi.
+% usage:
+% \ifpdf
+%   % pdf code
+% \else
+%   % dvi code
+% \fi
+% The latest version of ifpdf.sty can be obtained from:
+% http://www.ctan.org/pkg/ifpdf
+% Also, note that IEEEtran.cls V1.7 and later provides a builtin
+% \ifCLASSINFOpdf conditional that works the same way.
+% When switching from latex to pdflatex and vice-versa, the compiler may
+% have to be run twice to clear warning/error messages.
+
+
+
+
+
+
+% *** CITATION PACKAGES ***
+%
+%\usepackage{cite}
+% cite.sty was written by Donald Arseneau
+% V1.6 and later of IEEEtran pre-defines the format of the cite.sty package
+% \cite{} output to follow that of the IEEE. Loading the cite package will
+% result in citation numbers being automatically sorted and properly
+% "compressed/ranged". e.g., [1], [9], [2], [7], [5], [6] without using
+% cite.sty will become [1], [2], [5]--[7], [9] using cite.sty. cite.sty's
+% \cite will automatically add leading space, if needed. Use cite.sty's
+% noadjust option (cite.sty V3.8 and later) if you want to turn this off
+% such as if a citation ever needs to be enclosed in parenthesis.
+% cite.sty is already installed on most LaTeX systems. Be sure and use
+% version 5.0 (2009-03-20) and later if using hyperref.sty.
+% The latest version can be obtained at:
+% http://www.ctan.org/pkg/cite
+% The documentation is contained in the cite.sty file itself.
+
+
+
+
+
+
+% *** GRAPHICS RELATED PACKAGES ***
+%
+\ifCLASSINFOpdf
+   \usepackage[pdftex]{graphicx}
+   
+  % declare the path(s) where your graphic files are
+  % \graphicspath{{../pdf/}{../jpeg/}}
+  % and their extensions so you won't have to specify these with
+  % every instance of \includegraphics
+  % \DeclareGraphicsExtensions{.pdf,.jpeg,.png}
+\else
+  % or other class option (dvipsone, dvipdf, if not using dvips). graphicx
+  % will default to the driver specified in the system graphics.cfg if no
+  % driver is specified.
+  % \usepackage[dvips]{graphicx}
+  % declare the path(s) where your graphic files are
+  % \graphicspath{{../eps/}}
+  % and their extensions so you won't have to specify these with
+  % every instance of \includegraphics
+  % \DeclareGraphicsExtensions{.eps}
+\fi
+% graphicx was written by David Carlisle and Sebastian Rahtz. It is
+% required if you want graphics, photos, etc. graphicx.sty is already
+% installed on most LaTeX systems. The latest version and documentation
+% can be obtained at: 
+% http://www.ctan.org/pkg/graphicx
+% Another good source of documentation is "Using Imported Graphics in
+% LaTeX2e" by Keith Reckdahl which can be found at:
+% http://www.ctan.org/pkg/epslatex
+%
+% latex, and pdflatex in dvi mode, support graphics in encapsulated
+% postscript (.eps) format. pdflatex in pdf mode supports graphics
+% in .pdf, .jpeg, .png and .mps (metapost) formats. Users should ensure
+% that all non-photo figures use a vector format (.eps, .pdf, .mps) and
+% not a bitmapped formats (.jpeg, .png). The IEEE frowns on bitmapped formats
+% which can result in "jaggedy"/blurry rendering of lines and letters as
+% well as large increases in file sizes.
+%
+% You can find documentation about the pdfTeX application at:
+% http://www.tug.org/applications/pdftex
+
+
+
+
+
+% *** MATH PACKAGES ***
+%
+\usepackage{amsmath}
+% A popular package from the American Mathematical Society that provides
+% many useful and powerful commands for dealing with mathematics.
+%
+% Note that the amsmath package sets \interdisplaylinepenalty to 10000
+% thus preventing page breaks from occurring within multiline equations. Use:
+%\interdisplaylinepenalty=2500
+% after loading amsmath to restore such page breaks as IEEEtran.cls normally
+% does. amsmath.sty is already installed on most LaTeX systems. The latest
+% version and documentation can be obtained at:
+% http://www.ctan.org/pkg/amsmath
+
+
+
+
+
+% *** SPECIALIZED LIST PACKAGES ***
+%
+\usepackage{algorithmic}
+% algorithmic.sty was written by Peter Williams and Rogerio Brito.
+% This package provides an algorithmic environment fo describing algorithms.
+% You can use the algorithmic environment in-text or within a figure
+% environment to provide for a floating algorithm. Do NOT use the algorithm
+% floating environment provided by algorithm.sty (by the same authors) or
+% algorithm2e.sty (by Christophe Fiorio) as the IEEE does not use dedicated
+% algorithm float types and packages that provide these will not provide
+% correct IEEE style captions. The latest version and documentation of
+% algorithmic.sty can be obtained at:
+% http://www.ctan.org/pkg/algorithms
+% Also of interest may be the (relatively newer and more customizable)
+% algorithmicx.sty package by Szasz Janos:
+% http://www.ctan.org/pkg/algorithmicx
+\usepackage[ruled,vlined]{algorithm2e}
+
+
+
+% *** ALIGNMENT PACKAGES ***
+%
+%\usepackage{array}
+% Frank Mittelbach's and David Carlisle's array.sty patches and improves
+% the standard LaTeX2e array and tabular environments to provide better
+% appearance and additional user controls. As the default LaTeX2e table
+% generation code is lacking to the point of almost being broken with
+% respect to the quality of the end results, all users are strongly
+% advised to use an enhanced (at the very least that provided by array.sty)
+% set of table tools. array.sty is already installed on most systems. The
+% latest version and documentation can be obtained at:
+% http://www.ctan.org/pkg/array
+
+
+% IEEEtran contains the IEEEeqnarray family of commands that can be used to
+% generate multiline equations as well as matrices, tables, etc., of high
+% quality.
+
+
+
+
+% *** SUBFIGURE PACKAGES ***
+%\ifCLASSOPTIONcompsoc
+%  \usepackage[caption=false,font=normalsize,labelfont=sf,textfont=sf]{subfig}
+%\else
+%  \usepackage[caption=false,font=footnotesize]{subfig}
+%\fi
+% subfig.sty, written by Steven Douglas Cochran, is the modern replacement
+% for subfigure.sty, the latter of which is no longer maintained and is
+% incompatible with some LaTeX packages including fixltx2e. However,
+% subfig.sty requires and automatically loads Axel Sommerfeldt's caption.sty
+% which will override IEEEtran.cls' handling of captions and this will result
+% in non-IEEE style figure/table captions. To prevent this problem, be sure
+% and invoke subfig.sty's "caption=false" package option (available since
+% subfig.sty version 1.3, 2005/06/28) as this is will preserve IEEEtran.cls
+% handling of captions.
+% Note that the Computer Society format requires a larger sans serif font
+% than the serif footnote size font used in traditional IEEE formatting
+% and thus the need to invoke different subfig.sty package options depending
+% on whether compsoc mode has been enabled.
+%
+% The latest version and documentation of subfig.sty can be obtained at:
+% http://www.ctan.org/pkg/subfig
+
+
+
+
+% *** FLOAT PACKAGES ***
+%
+%\usepackage{fixltx2e}
+% fixltx2e, the successor to the earlier fix2col.sty, was written by
+% Frank Mittelbach and David Carlisle. This package corrects a few problems
+% in the LaTeX2e kernel, the most notable of which is that in current
+% LaTeX2e releases, the ordering of single and double column floats is not
+% guaranteed to be preserved. Thus, an unpatched LaTeX2e can allow a
+% single column figure to be placed prior to an earlier double column
+% figure.
+% Be aware that LaTeX2e kernels dated 2015 and later have fixltx2e.sty's
+% corrections already built into the system in which case a warning will
+% be issued if an attempt is made to load fixltx2e.sty as it is no longer
+% needed.
+% The latest version and documentation can be found at:
+% http://www.ctan.org/pkg/fixltx2e
+
+
+%\usepackage{stfloats}
+% stfloats.sty was written by Sigitas Tolusis. This package gives LaTeX2e
+% the ability to do double column floats at the bottom of the page as well
+% as the top. (e.g., "\begin{figure*}[!b]" is not normally possible in
+% LaTeX2e). It also provides a command:
+%\fnbelowfloat
+% to enable the placement of footnotes below bottom floats (the standard
+% LaTeX2e kernel puts them above bottom floats). This is an invasive package
+% which rewrites many portions of the LaTeX2e float routines. It may not work
+% with other packages that modify the LaTeX2e float routines. The latest
+% version and documentation can be obtained at:
+% http://www.ctan.org/pkg/stfloats
+% Do not use the stfloats baselinefloat ability as the IEEE does not allow
+% \baselineskip to stretch. Authors submitting work to the IEEE should note
+% that the IEEE rarely uses double column equations and that authors should try
+% to avoid such use. Do not be tempted to use the cuted.sty or midfloat.sty
+% packages (also by Sigitas Tolusis) as the IEEE does not format its papers in
+% such ways.
+% Do not attempt to use stfloats with fixltx2e as they are incompatible.
+% Instead, use Morten Hogholm'a dblfloatfix which combines the features
+% of both fixltx2e and stfloats:
+%
+% \usepackage{dblfloatfix}
+% The latest version can be found at:
+% http://www.ctan.org/pkg/dblfloatfix
+
+
+
+
+% *** PDF, URL AND HYPERLINK PACKAGES ***
+%
+%\usepackage{url}
+% url.sty was written by Donald Arseneau. It provides better support for
+% handling and breaking URLs. url.sty is already installed on most LaTeX
+% systems. The latest version and documentation can be obtained at:
+% http://www.ctan.org/pkg/url
+% Basically, \url{my_url_here}.
+
+
+
+
+% *** Do not adjust lengths that control margins, column widths, etc. ***
+% *** Do not use packages that alter fonts (such as pslatex).         ***
+% There should be no need to do such things with IEEEtran.cls V1.6 and later.
+% (Unless specifically asked to do so by the journal or conference you plan
+% to submit to, of course. )
+
+
+% correct bad hyphenation here
+\hyphenation{op-tical net-works semi-conduc-tor}
+%\usepackage{graphicx}
+
+
+\begin{document}
+%
+% paper title
+% Titles are generally capitalized except for words such as a, an, and, as,
+% at, but, by, for, in, nor, of, on, or, the, to and up, which are usually
+% not capitalized unless they are the first or last word of the title.
+% Linebreaks \\ can be used within to get better formatting as desired.
+% Do not put math or special symbols in the title.
+\title{A parallel implementation of Ehrlich-Aberth algorithm  for root finding of polynomials
+on Multi-GPU with OpenMP/MPI}
+
+
+% author names and affiliations
+% use a multiple column layout for up to three different
+% affiliations
+\author{\IEEEauthorblockN{Michael Shell}
+\IEEEauthorblockA{School of Electrical and\\Computer Engineering\\
+Georgia Institute of Technology\\
+Atlanta, Georgia 30332--0250\\
+Email: http://www.michaelshell.org/contact.html}
+\and
+\IEEEauthorblockN{Homer Simpson}
+\IEEEauthorblockA{Twentieth Century Fox\\
+Springfield, USA\\
+Email: homer@thesimpsons.com}
+\and
+\IEEEauthorblockN{James Kirk\\ and Montgomery Scott}
+\IEEEauthorblockA{Starfleet Academy\\
+San Francisco, California 96678--2391\\
+Telephone: (800) 555--1212\\
+Fax: (888) 555--1212}}
+
+% conference papers do not typically use \thanks and this command
+% is locked out in conference mode. If really needed, such as for
+% the acknowledgment of grants, issue a \IEEEoverridecommandlockouts
+% after \documentclass
+
+% for over three affiliations, or if they all won't fit within the width
+% of the page, use this alternative format:
+% 
+%\author{\IEEEauthorblockN{Michael Shell\IEEEauthorrefmark{1},
+%Homer Simpson\IEEEauthorrefmark{2},
+%James Kirk\IEEEauthorrefmark{3}, 
+%Montgomery Scott\IEEEauthorrefmark{3} and
+%Eldon Tyrell\IEEEauthorrefmark{4}}
+%\IEEEauthorblockA{\IEEEauthorrefmark{1}School of Electrical and Computer Engineering\\
+%Georgia Institute of Technology,
+%Atlanta, Georgia 30332--0250\\ Email: see http://www.michaelshell.org/contact.html}
+%\IEEEauthorblockA{\IEEEauthorrefmark{2}Twentieth Century Fox, Springfield, USA\\
+%Email: homer@thesimpsons.com}
+%\IEEEauthorblockA{\IEEEauthorrefmark{3}Starfleet Academy, San Francisco, California 96678-2391\\
+%Telephone: (800) 555--1212, Fax: (888) 555--1212}
+%\IEEEauthorblockA{\IEEEauthorrefmark{4}Tyrell Inc., 123 Replicant Street, Los Angeles, California 90210--4321}}
+
+
+
+
+% use for special paper notices
+%\IEEEspecialpapernotice{(Invited Paper)}
+
+
+
+
+% make the title area
+\maketitle
+
+% As a general rule, do not put math, special symbols or citations
+% in the abstract
+\begin{abstract}
+The abstract goes here.
+\end{abstract}
+
+% no keywords
+
+
+
+
+% For peer review papers, you can put extra information on the cover
+% page as needed:
+% \ifCLASSOPTIONpeerreview
+% \begin{center} \bfseries EDICS Category: 3-BBND \end{center}
+% \fi
+%
+% For peerreview papers, this IEEEtran command inserts a page break and
+% creates the second title. It will be ignored for other modes.
+\IEEEpeerreviewmaketitle
+
+
+
+\section{Introduction}
+Polynomials are mathematical algebraic structures used in science and engineering to capture physical phenomena and to express any outcome in the form of a function of some unknown variables. Formally speaking,  a polynomial $p(x)$ of degree \textit{n} having $n$ coefficients in the complex plane \textit{C} is :
+%%\begin{center}
+\begin{equation}
+     {\Large p(x)=\sum_{i=0}^{n}{a_{i}x^{i}}}.
+\end{equation}
+%%\end{center}
+
+The root finding problem consists in finding the values of all the $n$ values of the variable $x$ for which \textit{p(x)} is nullified. Such values are called zeros of $p$. If zeros are $\alpha_{i},\textit{i=1,...,n}$ the $p(x)$ can be written as :
+\begin{equation}
+     {\Large p(x)=a_{n}\prod_{i=1}^{n}(x-\alpha_{i}), a_{0} a_{n}\neq 0}.
+\end{equation}
+
+The problem of finding the roots of polynomials is encountered in different applications. Most of the numerical methods that deal with this problem are simultaneous ones. These methods start from the initial approximations of all the roots of the polynomial and give a sequence of approximations that converge to the roots of the polynomial. The first method of this group is Durand-Kerner method:
+\begin{equation}
+\label{DK}
+ DK: z_i^{k+1}=z_{i}^{k}-\frac{P(z_i^{k})}{\prod_{i\neq j}(z_i^{k}-z_j^{k})},   i = 1, . . . , n,
+\end{equation}
+%%\end{center}
+where $z_i^k$ is the $i^{th}$ root of the polynomial $p$ at the
+iteration $k$.
+Another method discovered by
+Borsch-Supan~\cite{ Borch-Supan63} and also described and brought
+in the following form by Ehrlich~\cite{Ehrlich67} and
+Aberth~\cite{Aberth73} uses a different iteration formula given as:
+%%\begin{center}
+\begin{equation}
+\label{Eq:EA}
+ EA: z_i^{k+1}=z_i^{k}-\frac{1}{{\frac {P'(z_i^{k})} {P(z_i^{k})}}-{\sum_{i\neq j}\frac{1}{(z_i^{k}-z_j^{k})}}}, i = 1, . . . , n,
+\end{equation}
+%%\end{center}
+where $p'(z)$ is the polynomial derivative of $p$ evaluated in the
+point $z$.
+
+%Aberth, Ehrlich and Farmer-Loizou~\cite{Loizou83} have proved that
+%the Ehrlich-Aberth method (EA) has a cubic order of convergence for simple roots whereas the Durand-Kerner has a quadratic order of %convergence.
+
+The main problem of the simultaneous methods is that the necessary time needed for the convergence is increased with the increasing of the degree of the polynomial. Many authors have treated the problem of implementation of simultaneous methods in parallel. Freeman [10] implemented and compared DK, EA and another method of the fourth order proposed by Farmer
+and Loizou [9], on a 8-processor linear chain, for polynomials of degree up to 8.
+The third method often diverges, but the first two methods have speed-up equal to 5.5. Later, Freeman and Bane [11] considered asynchronous algorithms, in which each processor continues to update its approximations even though the latest values of other $z^{k}_{i}$ have not been received from the other processors, in contrast with synchronous algorithms where it would wait those values before
+making a new iteration. Couturier and al. [12] proposed two methods of parallelization for a shared memory architecture with \textit{OpenMP} and for distributed memory one with \textit{MPI}. They were able to compute the roots of sparse polynomials of degree 10,000 in 116 seconds with \textit{OpenMP} and 135 seconds with \textit{MPI} only 8 personal computers and 2 communications per iteration. Comparing to the sequential implementation where it takes up to 3,300 seconds to obtain the same results, the authors show an interesting speedup.
+
+Very few works had been performed since this last work until the appearing of the Compute Unified Device Architecture (CUDA) [13], a parallel computing platform and a programming model invented by NVIDIA. The computing power of GPUs (Graphics Processing Unit) has exceeded that of CPUs. However, CUDA adopts a totally new computing architecture to use the hardware resources provided by GPU in order to offer a stronger computing ability to the massive data computing. Ghidouche and al [14] proposed an implementation of the Durand-Kerner method on GPU. Their main result showed that a parallel CUDA implementation is about 10 times faster than the sequential implementation on a single CPU for sparse polynomials of degree 48,000.
+
+Finding polynomial roots rapidly and accurately is the main objective of our work. In this paper we propose the parallelization of Ehrlich-Aberth method using a parallel programming paradigms (OpenMP, MPI) on GPUs. We consider two architectures: Shared memory with OpenMP API based on threads from the same system process, which each thread is attached to one GPU and after the various memory allocation, each thread throws its part of calculation ( to do this you must first load on the GPU required data and after Suddenly repatriate the result on the host). Distributed memory with MPI: The MPI library is often used for parallel programming [11] in
+cluster systems because it is a message-passing programming language. Each GPU are attached to one process MPI, and a loop is in charge of the distribution of tasks between the MPI processes. this solution can be used on one GPU, or executed on a distributed cluster of GPUs, employing the Message Passing Interface (MPI) to communicate between separate CUDA cards. This solution permits scaling of the problem size to larger classes than would be possible on a single device and demonstrates the performance which users might expect from future
+HPC architectures where accelerators are deployed. 
+This paper is organized as follows, in section 2 we recall the Ehrlich-Aberth method. In section 3 we present EA algorithm on single GPU. In section 4 we propose the EA algorithm implementation on MGPU for (OpenMP-CUDA) approach and (MPI-CUDA) approach. In section 5 we present our experiments and discus it. Finally, Section~\ref{sec6} concludes this paper and gives some hints for future research directions in this topic.
+\section{Parallel Programmings Model}
+\subsection{OpenMP}%L'article en anglais Multi-GPU and multi-CPU accelerated FDTD scheme for vibroacoustic applications 
+Open Multi-Processing (OpenMP) is a shared memory architecture API that provides multi thread capacity [22]. OpenMP is
+a portable approach for parallel programming on shared memory systems based on compiler directives, that can be included in order
+to parallelize a loop. In this way, a set of loops can be distributed along the different threads that will access to different data allo-
+cated in local shared memory. One of the advantages of OpenMP is its global view of application memory address space that allows relatively fast development of parallel applications with easier maintenance. However, it is often difficult to get high rates of
+performance in large scale applications. Although, in OpenMP a usage of threads ids and managing data explicitly as done in an MPI
+code can be considered, it defeats the advantages of OpenMP.
+
+\subsection{OpenMP} %L'article en Français Programmation multiGPU – OpenMP versus MPI
+OpenMP is a shared memory programming API based on threads from
+the same system process. Designed for multiprocessor shared memory UMA or
+NUMA [10], it relies on the execution model SPMD ( Single Program, Multiple Data Stream )
+where the thread "master" and threads "slaves" asynchronously execute their codes
+communicate / synchronize via shared memory [7]. It also helps to build
+the loop parallelism and is very suitable for an incremental code parallelization
+Sequential natively. Threads share some or all of the available memory and can
+have private memory areas [6].
+
+\subsection{MPI} %L'article en Français Programmation multiGPU – OpenMP versus MPI
+ The library MPI allows to use a distributed memory architecture. The various processes have their own environment of execution and execute their codes in a asynchronous way, according to the model MIMD (Multiple Instruction streams, Multiple Dated streams); they communicate and synchronize by exchanges of messages [17]. MPI messages are explicitly sent, while the exchanges are implicit within the framework of a programming multi-thread (OpenMP/Pthreads).
+\subsection{CUDA}%L'article en anglais Multi-GPU and multi-CPU accelerated FDTD scheme for vibroacoustic applications
+ CUDA (an acronym for Compute Unified Device Architecture) is a parallel computing architecture developed by NVIDIA [28]. The
+unit of execution in CUDA is called a thread. Each thread executes the kernel by the streaming processors in parallel. In CUDA,
+a group of threads that are executed together is called thread blocks, and the computational grid consists of a grid of thread
+blocks. Additionally, a thread block can use the shared memory on a single multiprocessor as while as the grid executes a single
+CUDA program logically in parallel. Thus in CUDA programming, it is necessary to design carefully the arrangement of the thread
+blocks in order to ensure low latency and a proper usage of shared memory, since it can be shared only in a thread block
+scope. The effective bandwidth of each memory space depends on the memory access pattern. Since the global memory has lower
+bandwidth than the shared memory, the global memory accesses should be minimized.
+
+
+We introduced three paradigms of parallel programming. Our objective consist to implement an algorithm of root finding polynomial on multiple GPUs. It primordial to know how manage CUDA context of different GPUs. A direct method for controlling the various GPU is to use as many threads or processes that GPU. We can choose the GPU index based on the identifier of OpenMP thread or the rank of the MPI process. Both approaches will be created.
+
+\section{The EA algorithm on single GPU}
+\subsection{the EA method}
+%\begin{figure}[htbp]
+%\centering
+ % \includegraphics[angle=-90,width=0.5\textwidth]{EA-Algorithm}
+%\caption{The Ehrlich-Aberth algorithm on single GPU}
+%\label{fig:03}
+%\end{figure}
+
+the Ehrlich-Aberth method is an iterative  method, contain 4 steps, start from the initial approximations of all the
+roots of the polynomial,the second step initialize the solution vector $Z$ using the Guggenheimer method to assure the distinction of the initial vector roots, than in step 3 we apply the the iterative function based on the Newton's method and Weiestrass operator[...,...], wich will make it possible to converge to the roots solution, provided that all the root are different. At the end of each application of the iterative function, a stop condition is verified consists in stopping the iterative process when the whole of the modules of the roots
+are lower than a fixed value $ε$ 
+\subsection{EA parallel implementation on CUDA}
+Like any parallel code, a GPU parallel implementation first
+requires to determine the sequential tasks and the
+parallelizable parts of the sequential version of the
+program/algorithm. In our case, all the operations that are easy
+to execute in parallel must be made by the GPU to accelerate
+the execution of the application, like the step 3 and step 4. On the other hand, all the
+sequential operations and the operations that have data
+dependencies between threads or recursive computations must
+be executed by only one CUDA or CPU thread (step 1 and step 2). Initially we specifies the organization of threads in parallel, need to specify the dimension of the grid Dimgrid: the number of block per grid and block by DimBlock: the number of threads per block required to process a certain task. 
+
+we create the kernel, for step 3 we have two kernels, the
+first named \textit{save} is used to save vector $Z^{K-1}$ and the kernel
+\textit{update} is used to update the $Z^{K}$ vector. In step 4 a kernel is
+created to test the convergence of the method. In order to
+compute function H, we have two possibilities: either to use
+the Jacobi method, or the Gauss-Seidel method which uses the
+most recent computed roots. It is well known that the Gauss-
+Seidel mode converges more quickly. So, we used the Gauss-Seidel mode of iteration. To
+parallelize the code, we created kernels and many functions to
+be executed on the GPU for all the operations dealing with the
+computation on complex numbers and the evaluation of the
+polynomials. As said previously, we managed both functions
+of evaluation of a polynomial: the normal method, based on
+the method of Horner and the method based on the logarithm
+of the polynomial. All these methods were rather long to
+implement, as the development of corresponding kernels with
+CUDA is longer than on a CPU host. This comes in particular
+from the fact that it is very difficult to debug CUDA running
+threads like threads on a CPU host. In the following paragraph
+Algorithm 1 shows the GPU parallel implementation of Ehrlich-Aberth method.
+
+Algorithm~\ref{alg2-cuda} shows a sketch of the Ehrlich-Aberth method using CUDA.
+
+\begin{enumerate}
+\begin{algorithm}[htpb]
+\label{alg2-cuda}
+%\LinesNumbered
+\caption{CUDA Algorithm to find roots with the Ehrlich-Aberth method}
+
+\KwIn{$Z^{0}$ (Initial root's vector), $\varepsilon$ (Error tolerance
+  threshold), P (Polynomial to solve), Pu (Derivative of P), $n$ (Polynomial degrees), $\Delta z_{max}$ (Maximum value of stop condition)}
+
+\KwOut {$Z$ (Solution root's vector), $ZPrec$ (Previous solution root's vector)}
+
+\BlankLine
+
+\item Initialization of the of P\;
+\item Initialization of the of Pu\;
+\item Initialization of the solution vector $Z^{0}$\;
+\item Allocate and copy initial data to the GPU global memory\;
+\item k=0\;
+\While {$\Delta z_{max} > \epsilon$}{
+\item Let $\Delta z_{max}=0$\;
+\item $ kernel\_save(ZPrec,Z)$\;
+\item  k=k+1\;
+\item $ kernel\_update(Z,P,Pu)$\;
+\item $kernel\_testConverge(\Delta z_{max},Z,ZPrec)$\;
+
+}
+\item Copy results from GPU memory to CPU memory\;
+\end{algorithm}
+\end{enumerate}
+~\\ 
+
+
+\section{The EA algorithm on Multi-GPU}
+
+\subsection{MGPU (OpenMP-CUDA) approach}
+Our OpenMP-CUDA implementation of EA algorithm is based on the hybrid OpenMP and CUDA programming model. It works
+as follows.
+Based on the metadata, a shared memory is used to make data evenly shared among OpenMP threads. The shared data are the solution vector $Z$, the polynomial to solve $P$. vector of error of stop condition $\Delta z$. Let(T\_omp) number of OpenMP threads is equal to the number of GPUs, each threads OpenMP checks one GPU,  and control a part of the shared memory, that is a part of the vector Z  like: $(n/num\_gpu)$ roots, n: the polynomial's degrees, $num\_gpu$ the number of GPUs. Each OpenMP thread copies its data from host memory to GPU’s device memory.Than every GPU will have a grid of computation organized with its performances and the size of data of which it checks and compute kernels. %In principle a grid is set by two parameter DimGrid, the number of block per grid, DimBloc: the number of threads per block. The following schema  shows the architecture of (CUDA,OpenMP).
+
+%\begin{figure}[htbp]
+%\centering
+ % \includegraphics[angle=-90,width=0.5\textwidth]{OpenMP-CUDA}
+%\caption{The OpenMP-CUDA architecture}
+%\label{fig:03}
+%\end{figure}
+%Each thread OpenMP compute the kernels on GPUs,than after each iteration they copy out the data from GPU memory to CPU shared memory. The kernels are re-runs is up to the roots converge sufficiently. Here are below the corresponding algorithm:
+
+$num\_gpus$ thread OpenMP are created using \verb=omp_set_num_threads();=function (line,Algorithm \ref{alg2-cuda-openmp}), the shared memory is created using \verb=#pragma omp parallel shared()= OpenMP function (line 5,Algorithm\ref{alg2-cuda-openmp}), than each OpenMP threads allocate and copy initial data from CPU memory to the GPU global memories, execute the kernels on GPU, and compute only his portion of roots indicated with variable \textit{index} initialized in (line 5, Algorithm \ref{alg2-cuda-openmp}), used as input data in the $kernel\_update$ (line 10, Algorithm \ref{alg2-cuda-openmp}). After each iteration, OpenMP threads synchronize using \verb=#pragma omp barrier;= to recuperate all values of vector $\Delta z$, to compute the maximum stop condition in vector $\Delta z$(line 12, Algorithm \ref{alg2-cuda-openmp}).Finally,they copy the results from GPU memories to CPU memory. The OpenMP threads execute kernels until the roots converge sufficiently.  
+\begin{enumerate}
+\begin{algorithm}[htpb]
+\label{alg2-cuda-openmp}
+%\LinesNumbered
+\caption{CUDA-OpenMP Algorithm to find roots with the Ehrlich-Aberth method}
+
+\KwIn{$Z^{0}$ (Initial root's vector), $\varepsilon$ (Error tolerance
+  threshold), P (Polynomial to solve), Pu (Derivative of P), $n$ (Polynomial degrees), $\Delta z$ ( Vector of errors of stop condition), $num_gpus$ (number of OpenMP threads/ number of GPUs), $Size$ (number of roots)}
+
+\KwOut {$Z$ (Solution root's vector), $ZPrec$ (Previous solution root's vector)}
+
+\BlankLine
+
+\item Initialization of the of P\;
+\item Initialization of the of Pu\;
+\item Initialization of the solution vector $Z^{0}$\;
+\verb=omp_set_num_threads(num_gpus);=
+\verb=#pragma omp parallel shared(Z,$\Delta$ z,P);=
+\verb=cudaGetDevice(gpu_id);=
+\item Allocate and copy initial data from CPU memory to the GPU global memories\;
+\item index= $Size/num\_gpus$\;
+\item k=0\;
+\While {$error > \epsilon$}{
+\item Let $\Delta z=0$\;
+\item $ kernel\_save(ZPrec,Z)$\;
+\item  k=k+1\;
+\item $ kernel\_update(Z,P,Pu,index)$\;
+\item $kernel\_testConverge(\Delta z[gpu\_id],Z,ZPrec)$\;
+%\verb=#pragma omp barrier;=
+\item error= Max($\Delta z$)\;
+}
+
+\item Copy results from GPU memories to CPU memory\;
+\end{algorithm}
+\end{enumerate}
+~\\ 
+
+
+
+\subsection{Multi-GPU (MPI-CUDA) approach}
+%\begin{figure}[htbp]
+%\centering
+ % \includegraphics[angle=-90,width=0.2\textwidth]{MPI-CUDA}
+%\caption{The MPI-CUDA architecture }
+%\label{fig:03}
+%\end{figure}
+Our parallel implementation of the Ehrlich-Aberth method to find root polynomial using (CUDA-MPI) approach, splits input data of the polynomial to solve between MPI processes. From Algorithm 3, the input data are the polynomial to solve $P$, the solution vector $Z$, the previous solution vector $zPrev$, and the Value of errors of stop condition $\Delta z$. Let $p$ denote the number of MPI processes on and $n$ the size of the polynomial to be solved. The algorithm performs a simple data partitioning by creating $p$ portions, of at most $⌈n/p⌉$ roots to find per MPI process, for each element mentioned above. Consequently, each MPI process $k$ will have its own solution vector $Z_{k}$,polynomial to be solved $p_{k}$, the error of stop condition $\Delta z_{k}$, Than each MPI processes compute only $⌈n/p⌉$ roots.
+
+Since a GPU works only on data of its memory, all local input data, $Z_{k}, p_{k}$ and $\Delta z_{k}$, must be transferred from CPU memories to the corresponding GPU memories. Afterward, the same EA algorithm (Algorithm 1) is run by all processes but on different sub-polynomial root $ p(x)_{k}=\sum_{i=k(\frac{n}{p})}^{k+1(\frac{n}{p})} a_{i}x^{i}, k=1,...,p$.  Each processes MPI execute the  loop \verb=(While(...)...do)= contain the kernels. Than each process MPI  compute only his portion of roots indicated with variable \textit{index} initialized in (line 5, Algorithm \ref{alg2-cuda-mpi}), used as input data in the $kernel\_update$ (line 10, Algorithm \ref{alg2-cuda-mpi}). After each iteration, MPI processes synchronize using \verb=MPI_Allreduce= function, in order to compute the maximum error stops condition $\Delta z_{k}$ computed by each process MPI line (line, Algorithm\ref{alg2-cuda-mpi}), and  copy the values of new roots computed from GPU memories to CPU memories, than communicate  her results to the neighboring processes,using \verb=MPI_Alltoallv=. If maximum stop condition $error > \epsilon$ the processes stay to execute the loop \verb= while(...)...do= until all the roots converge sufficiently.
+
+\begin{enumerate}
+\begin{algorithm}[htpb]
+\label{alg2-cuda-mpi}
+%\LinesNumbered
+\caption{CUDA-MPI Algorithm to find roots with the Ehrlich-Aberth method}
+
+\KwIn{$Z^{0}$ (Initial root's vector), $\varepsilon$ (Error tolerance
+  threshold), P (Polynomial to solve), Pu (Derivative of P), $n$ (Polynomial degrees), $\Delta z$ ( error of stop condition), $num_gpus$ (number of MPI processes/ number of GPUs), Size (number of roots)}
+
+\KwOut {$Z$ (Solution root's vector), $ZPrec$ (Previous solution root's vector)}
+
+\BlankLine
+\item Initialization of the P\;
+\item Initialization of the Pu\;
+\item Initialization of the solution vector $Z^{0}$\;
+\item Allocate and copy initial data from CPU memories to the GPU global memories\;
+\item $index= Size/num_gpus$\;
+\item k=0\;
+\While {$error > \epsilon$}{
+\item Let $\Delta z=0$\;
+\item $ kernel\_save(ZPrec,Z)$\;
+\item  k=k+1\;
+\item $ kernel\_update(Z,P,Pu,index)$\;
+\item $kernel\_testConverge(\Delta z,Z,ZPrec)$\;
+\item ComputeMaxError($\Delta z$,error)\;
+\item Copy results from GPU memories to CPU memories\;
+\item Send $Z[id]$ to all neighboring processes\;
+\item Receive $Z[j]$ from neighboring process j\;
+
+
+}
+\end{algorithm}
+\end{enumerate}
+~\\ 
+
+\section{experiments}
+We study two categories of polynomials: sparse polynomials and full polynomials.\\
+{\it A sparse polynomial} is a polynomial for which only some coefficients are not null. In this paper, we consider sparse polynomials for which the roots are distributed on 2 distinct circles:
+\begin{equation}
+       \forall \alpha_{1} \alpha_{2} \in C,\forall n_{1},n_{2} \in N^{*}; P(z)= (z^{n_{1}}-\alpha_{1})(z^{n_{2}}-\alpha_{2})
+\end{equation}\noindent
+{\it A full polynomial} is, in contrast, a polynomial for which all the coefficients are not null. A full polynomial is defined by:
+%%\begin{equation}
+       %%\forall \alpha_{i} \in C,\forall n_{i}\in N^{*}; P(z)= \sum^{n}_{i=1}(z^{n^{i}}.a_{i})
+%%\end{equation}
+
+\begin{equation}
+     {\Large \forall a_{i} \in C, i\in N;  p(x)=\sum^{n}_{i=0} a_{i}.x^{i}} 
+\end{equation}
+For our tests, a CPU Intel(R) Xeon(R) CPU E5620@2.40GHz and a GPU K40 (with 6 Go of ram) are used. 
+
+We performed a set of experiments on single GPU and Multi-GPU using (OpenMP/MPI) to find roots polynomials with EA algorithm, for both sparse and full polynomials of different sizes. We took into account the execution times and the  polynomial size performed by sum or each experiment.
+All experimental results obtained from the simulations are made in
+double precision data, the convergence threshold of the methods is set
+to $10^{-7}$.
+%Since we were more interested in the comparison of the
+%performance behaviors of Ehrlich-Aberth and Durand-Kerner methods on
+%CPUs versus on GPUs.
+The initialization values of the vector solution
+of the methods are given in %Section~\ref{sec:vec_initialization}.
+\begin{figure}[htbp]
+\centering
+  \includegraphics[angle=-90,width=0.5\textwidth]{Sparse_openmp}
+\caption{Execution times in seconds of the Ehrlich-Aberth method for solving sparse polynomials on GPUs using shared memory paradigm with OpenMP}
+\label{fig:01}
+\end{figure}
+
+\begin{figure}[htbp]
+\centering
+  \includegraphics[angle=-90,width=0.5\textwidth]{Sparse_mpi}
+\caption{Execution times in seconds of the Ehrlich-Aberth method for solving sparse polynomials on GPUs using distributed memory paradigm with MPI}
+\label{fig:02}
+\end{figure}
+
+\begin{figure}[htbp]
+\centering
+  \includegraphics[angle=-90,width=0.5\textwidth]{Full_openmp}
+\caption{Execution times in seconds of the Ehrlich-Aberth method for solving full polynomials on GPUs using shared memory paradigm with OpenMP}
+\label{fig:03}
+\end{figure}
+
+\begin{figure}[htbp]
+\centering
+  \includegraphics[angle=-90,width=0.5\textwidth]{Full_mpi}
+\caption{Execution times in seconds of the Ehrlich-Aberth method for full polynomials on GPUs using distributed memory paradigm with MPI}
+\label{fig:04}
+\end{figure}
+
+\begin{figure}[htbp]
+\centering
+  \includegraphics[angle=-90,width=0.5\textwidth]{Sparse_mpivsomp}
+\caption{Comparaison between MPI and OpenMP versions of the Ehrlich-Aberth method for solving sparse plynomials on GPUs}
+\label{fig:05}
+\end{figure}
+
+\begin{figure}[htbp]
+\centering
+  \includegraphics[angle=-90,width=0.5\textwidth]{Full_mpivsomp}
+\caption{Comparaison between MPI and OpenMP versions of the Ehrlich-Aberth method for solving full polynomials on GPUs}
+\label{fig:06}
+\end{figure}
+
+\begin{figure}[htbp]
+\centering
+  \includegraphics[angle=-90,width=0.5\textwidth]{MPI_mpivsomp}
+\caption{Comparaison of execution times of the Ehrlich-Aberth method for solving sparse and full polynomials on GPUs with distributed memory paradigm using MPI}
+\label{fig:07}
+\end{figure}
+
+\begin{figure}[htbp]
+\centering
+  \includegraphics[angle=-90,width=0.5\textwidth]{OMP_mpivsomp}
+\caption{Comparaison of execution times of the Ehrlich-Aberth method for solving sparse and full polynomials on GPUs with shared memory paradigm using OpenMP}
+\label{fig:08}
+\end{figure}
+
+% An example of a floating figure using the graphicx package.
+% Note that \label must occur AFTER (or within) \caption.
+% For figures, \caption should occur after the \includegraphics.
+% Note that IEEEtran v1.7 and later has special internal code that
+% is designed to preserve the operation of \label within \caption
+% even when the captionsoff option is in effect. However, because
+% of issues like this, it may be the safest practice to put all your
+% \label just after \caption rather than within \caption{}.
+%
+% Reminder: the "draftcls" or "draftclsnofoot", not "draft", class
+% option should be used if it is desired that the figures are to be
+% displayed while in draft mode.
+%
+%\begin{figure}[!t]
+%\centering
+%\includegraphics[width=2.5in]{myfigure}
+% where an .eps filename suffix will be assumed under latex, 
+% and a .pdf suffix will be assumed for pdflatex; or what has been declared
+% via \DeclareGraphicsExtensions.
+%\caption{Simulation results for the network.}
+%\label{fig_sim}
+%\end{figure}
+
+% Note that the IEEE typically puts floats only at the top, even when this
+% results in a large percentage of a column being occupied by floats.
+
+
+% An example of a double column floating figure using two subfigures.
+% (The subfig.sty package must be loaded for this to work.)
+% The subfigure \label commands are set within each subfloat command,
+% and the \label for the overall figure must come after \caption.
+% \hfil is used as a separator to get equal spacing.
+% Watch out that the combined width of all the subfigures on a 
+% line do not exceed the text width or a line break will occur.
+%
+%\begin{figure*}[!t]
+%\centering
+%\subfloat[Case I]{\includegraphics[width=2.5in]{box}%
+%\label{fig_first_case}}
+%\hfil
+%\subfloat[Case II]{\includegraphics[width=2.5in]{box}%
+%\label{fig_second_case}}
+%\caption{Simulation results for the network.}
+%\label{fig_sim}
+%\end{figure*}
+%
+% Note that often IEEE papers with subfigures do not employ subfigure
+% captions (using the optional argument to \subfloat[]), but instead will
+% reference/describe all of them (a), (b), etc., within the main caption.
+% Be aware that for subfig.sty to generate the (a), (b), etc., subfigure
+% labels, the optional argument to \subfloat must be present. If a
+% subcaption is not desired, just leave its contents blank,
+% e.g., \subfloat[].
+
+
+% An example of a floating table. Note that, for IEEE style tables, the
+% \caption command should come BEFORE the table and, given that table
+% captions serve much like titles, are usually capitalized except for words
+% such as a, an, and, as, at, but, by, for, in, nor, of, on, or, the, to
+% and up, which are usually not capitalized unless they are the first or
+% last word of the caption. Table text will default to \footnotesize as
+% the IEEE normally uses this smaller font for tables.
+% The \label must come after \caption as always.
+%
+%\begin{table}[!t]
+%% increase table row spacing, adjust to taste
+%\renewcommand{\arraystretch}{1.3}
+% if using array.sty, it might be a good idea to tweak the value of
+% \extrarowheight as needed to properly center the text within the cells
+%\caption{An Example of a Table}
+%\label{table_example}
+%\centering
+%% Some packages, such as MDW tools, offer better commands for making tables
+%% than the plain LaTeX2e tabular which is used here.
+%\begin{tabular}{|c||c|}
+%\hline
+%One & Two\\
+%\hline
+%Three & Four\\
+%\hline
+%\end{tabular}
+%\end{table}
+
+
+% Note that the IEEE does not put floats in the very first column
+% - or typically anywhere on the first page for that matter. Also,
+% in-text middle ("here") positioning is typically not used, but it
+% is allowed and encouraged for Computer Society conferences (but
+% not Computer Society journals). Most IEEE journals/conferences use
+% top floats exclusively. 
+% Note that, LaTeX2e, unlike IEEE journals/conferences, places
+% footnotes above bottom floats. This can be corrected via the
+% \fnbelowfloat command of the stfloats package.
+
+
+
+
+\section{Conclusion}
+The conclusion goes here.
+
+
+
+
+% conference papers do not normally have an appendix
+
+
+% use section* for acknowledgment
+\section*{Acknowledgment}
+
+
+The authors would like to thank...
+
+
+
+
+
+% trigger a \newpage just before the given reference
+% number - used to balance the columns on the last page
+% adjust value as needed - may need to be readjusted if
+% the document is modified later
+%\IEEEtriggeratref{8}
+% The "triggered" command can be changed if desired:
+%\IEEEtriggercmd{\enlargethispage{-5in}}
+
+% references section
+
+% can use a bibliography generated by BibTeX as a .bbl file
+% BibTeX documentation can be easily obtained at:
+% http://mirror.ctan.org/biblio/bibtex/contrib/doc/
+% The IEEEtran BibTeX style support page is at:
+% http://www.michaelshell.org/tex/ieeetran/bibtex/
+%\bibliographystyle{IEEEtran}
+% argument is your BibTeX string definitions and bibliography database(s)
+%\bibliography{IEEEabrv,../bib/paper}
+%
+% <OR> manually copy in the resultant .bbl file
+% set second argument of \begin to the number of references
+% (used to reserve space for the reference number labels box)
+\begin{thebibliography}{1}
+
+\bibitem{IEEEhowto:kopka}
+H.~Kopka and P.~W. Daly, \emph{A Guide to \LaTeX}, 3rd~ed.\hskip 1em plus
+  0.5em minus 0.4em\relax Harlow, England: Addison-Wesley, 1999.
+
+\end{thebibliography}
+
+
+
+
+% that's all folks
+\end{document}
+
+