+Figure ~\ref{fig:08} shows the impact of sparsity on the effectiveness of the CUDA-OpenMP approach. We can see that the impact fellows the same pattern, a difference in execution time in favor of the sparse polynomials.
+%SIDER : il faut une explication ici. je ne vois pas de prime abords, qu'est-ce qui engendre cette différence, car quelques soient les coefficients nulls ou non nulls, c'est toutes les racines qui sont calculées qu'elles soient similaires ou non (degrés de multiplicité).
+\subsection{Scalability of the EA method on Multi-GPU to solve very high degree polynomials}
+These experiments report the execution time according to the degrees of polynomials ranging from 1,000,000 to 5,000,000 for both approaches with sparse and full polynomials.
+\begin{figure}[htbp]
+\centering
+ \includegraphics[angle=-90,width=0.5\textwidth]{big}
+ \caption{Execution times in seconds of the Ehrlich-Aberth method for solving full polynomials of high degree on 4 GPUs for sizes ranging from 1M to 5M}
+\label{fig:09}
+\end{figure}
+In figure ~\ref{fig:09} we can see that both approaches are scalable and can solve very high degree polynomials. With full polynomial both approaches give interestingly very similar results. For the sparse case however, there are a noticeable difference in favour of MPI when the degree is above 4M. Between 1M and 3M, the OMP approach is more effective and under 1M degree, OMP and MPI approaches are almost equivalent.
+
+%SIDER : il faut une explication sur les différences ici aussi.
+
+%for sparse and full polynomials