+\LZK{Vaut mieux expliquer l'implémentation en faisant référence à l'algo séquentiel que de parler des différentes steps.}
+
+%\begin{algorithm}[htpb]
+%\label{alg1-cuda}
+%\LinesNumbered
+%\SetAlgoNoLine
+%\caption{CUDA Algorithm to find polynomial roots with the Ehrlich-Aberth method}
+%\KwIn{$Z^{0}$ (Initial vector of roots), $\epsilon$ (Error tolerance threshold), P (Polynomial to solve), Pu (Derivative of P), $n$ (Polynomial degree), $\Delta z_{max}$ (Maximum value of stop condition)}
+%\KwOut{$Z$ (Solution vector of roots)}
+
+%\BlankLine
+
+%Initialization of P\;
+%Initialization of Pu\;
+%Initialization of the solution vector $Z^{0}$\;
+%Allocate and copy initial data to the GPU global memory\;
+%\While {$\Delta z_{max} > \epsilon$}{
+% $ ZPres=kernel\_save(Z)$\;
+% $ Z=kernel\_update(Z,P,Pu)$\;
+% $\Delta z_{max}=kernel\_testConv(Z,ZPrec)$\;
+
+%}
+%Copy results from GPU memory to CPU memory\;
+%\end{algorithm}