+%We propose to use the logarithm and the exponential of a complex in order to compute the power at a high exponent.
+Using the logarithm and the exponential operators, we can replace any
+multiplications and divisions with additions and
+subtractions. Consequently, computations manipulate lower values in absolute
+values~\cite{Karimall98}. \LZK{Je n'ai pas compris cette dernière
+ phrase? \RC{changé : on veut dire on manipule des valeurs plus petites en valeur absolues}}
+
+%This problem was discussed earlier in~\cite{Karimall98} for the Durand-Kerner method. The authors
+%propose to use the logarithm and the exponential of a complex in order to compute the power at a high exponent. Using the logarithm and the exponential operators, we can replace any multiplications and divisions with additions and subtractions. Consequently, computations manipulate lower absolute values and the roots for large polynomial degrees can be looked for successfully~\cite{Karimall98}.
+
+\subsection{The Ehrlich-Aberth parallel implementation on CUDA}
+%We introduced three paradigms of parallel programming.
+
+Our objective consists in implementing a root finding polynomial
+algorithm on multiple GPUs. To this end, it is primordial to know how
+to manage CUDA contexts of different GPUs. A direct method for
+controlling the various GPUs is to use as many threads or processes as
+GPU devices. We can choose the GPU index based on the identifier of
+OpenMP thread or the rank of the MPI process. Both approaches will be
+investigated. \LZK{Répétition! Le même texte est déjà écrit comme
+ intro dans la section II. Sinon ici on parle seulement de
+ l'implémentation cuda sans mpi et openmp! \RC{Je suis d'accord à
+ revoir après, quand les 2 parties suivantes seront plus stables}}
+
+
+
+
+Like any parallel code, a GPU parallel implementation first requires to determine the sequential code and the data-parallel operations of a algorithm. In fact, all the operations that are easy to execute in parallel must be made by the GPU to accelerate the execution, like the steps 3 and 4. On the other hand, all the sequential operations and the operations that have data dependencies between CUDA threads or recursive computations must be executed by only one CUDA thread or a CPU thread (the steps 1 and 2).\LZK{La méthode est déjà mal présentée, dans ce cas c'est encore plus difficile de comprendre que représentent ces différentes étapes!} Initially, we specify the organization of parallel threads by specifying the dimension of the grid \verb+Dimgrid+, the number of blocks per grid \verb+DimBlock+ and the number of threads per block.
+
+The code is organized as kernels which are parts of code that are run on GPU devices. For step 3, there are two kernels, the first is named \textit{save} is used to save vector $Z^{K-1}$ and the second one is
+named \textit{update} and is used to update the $Z^{K}$ vector. For
+step 4, a kernel tests the convergence of the method. In order to
+compute the function H, we have two possibilities: either to use the
+Jacobi mode, or the Gauss-Seidel mode of iterating which uses the most
+recent computed roots. It is well known that the Gauss-Seidel mode
+converges more quickly. So, we use Gauss-Seidel iterations. To
+parallelize the code, we create kernels and many functions to be
+executed on the GPU for all the operations dealing with the
+computation on complex numbers and the evaluation of the
+polynomials. As said previously, we manage both functions of
+evaluation: the normal method, based on the method of
+Horner and the method based on the logarithm of the polynomial. All
+these methods were rather long to implement, as the development of
+corresponding kernels with CUDA is longer than on a CPU host. This
+comes in particular from the fact that it is very difficult to debug
+CUDA running threads like threads on a CPU host. In the following
+paragraph Algorithm~\ref{alg1-cuda} shows the GPU parallel
+implementation of Ehrlich-Aberth method.
+\LZK{Vaut mieux expliquer l'implémentation en faisant référence à l'algo séquentiel que de parler des différentes steps.}
+
+\begin{algorithm}[htpb]
+\label{alg1-cuda}
+\LinesNumbered
+\SetAlgoNoLine
+\caption{CUDA Algorithm to find roots with the Ehrlich-Aberth method}
+
+\KwIn{$Z^{0}$ (Initial root's vector), $\varepsilon$ (Error tolerance
+ threshold), P (Polynomial to solve), Pu (Derivative of P), $n$ (Polynomial degrees), $\Delta z_{max}$ (Maximum value of stop condition)}
+
+\KwOut {$Z$ (Solution root's vector), $ZPrec$ (Previous solution root's vector)}
+
+%\BlankLine
+
+Initialization of P\;
+Initialization of Pu\;
+Initialization of the solution vector $Z^{0}$\;
+Allocate and copy initial data to the GPU global memory\;
+\While {$\Delta z_{max} > \epsilon$}{
+ $ ZPres=kernel\_save(Z)$\;
+ $ Z=kernel\_update(Z,P,Pu)$\;
+ $\Delta z_{max}=kernel\_testConv(Z,ZPrec)$\;
+
+}
+Copy results from GPU memory to CPU memory\;
+\end{algorithm}
+\RC{Si l'algo vous convient, il faudrait le détailler précisément}
+
+\section{The EA algorithm on Multiple GPUs}
+\label{sec4}
+\subsection{an OpenMP-CUDA approach}
+Our OpenMP-CUDA implementation of EA algorithm is based on the hybrid
+OpenMP and CUDA programming model. All the data are shared with
+OpenMP amoung all the OpenMP threads. The shared data are the solution
+vector $Z$, the polynomial to solve $P$, and the error vector $\Delta
+z$. The number of OpenMP threads is equal to the number of GPUs, each
+OpenMP thread binds to one GPU, and it controls a part of the shared
+memory. More precisely each OpenMP thread will be responsible to
+update its owns part of the vector Z. This part is call $Z_{loc}$ in
+the following. Then all GPUs will have a grid of computation organized
+according to the device performance and the size of data on which it
+runs the computation kernels.
+
+To compute one iteration of the EA method each GPU performs the
+followings steps. First roots are shared with OpenMP and the
+computation of the local size for each GPU is performed (lines 5-7 in
+Algo\ref{alg2-cuda-openmp}). Each thread starts by copying all the
+previous roots inside its GPU (line 9). Then each GPU will copy the
+previous roots (line 10) and it will compute an iteration of the EA
+method on its own roots (line 11). For that all the other roots are
+used. The convergence is checked on the new roots (line 12). At the end
+of an iteration, the updated roots are copied from the GPU to the
+CPU (line 14) by direcly updating its own roots in the shared memory
+arrays containing all the roots.
+
+%In principle a grid is set by two parameter DimGrid, the number of block per grid, DimBloc: the number of threads per block. The following schema shows the architecture of (CUDA,OpenMP).
+
+%\begin{figure}[htbp]
+%\centering
+ % \includegraphics[angle=-90,width=0.5\textwidth]{OpenMP-CUDA}
+%\caption{The OpenMP-CUDA architecture}
+%\label{fig:03}
+%\end{figure}
+%Each thread OpenMP compute the kernels on GPUs,than after each iteration they copy out the data from GPU memory to CPU shared memory. The kernels are re-runs is up to the roots converge sufficiently. Here are below the corresponding algorithm:
+
+%% \RC{Surement à virer ou réécrire pour etre compris sans algo}
+%% $num\_gpus$ OpenMP threads are created using
+%% \verb=omp_set_num_threads();=function (step $3$, Algorithm
+%% \ref{alg2-cuda-openmp}), the shared memory is created using
+%% \verb=#pragma omp parallel shared()= OpenMP function (line $5$,
+%% Algorithm\ref{alg2-cuda-openmp}), then each OpenMP thread allocates
+%% memory and copies initial data from CPU memory to GPU global memory,
+%% executes the kernels on GPU, but computes only his portion of roots
+%% indicated with variable \textit{index} initialized in (line 5,
+%% Algorithm \ref{alg2-cuda-openmp}), used as input data in the
+%% $kernel\_update$ (line 10, Algorithm \ref{alg2-cuda-openmp}). After
+%% each iteration, all OpenMP threads synchronize using
+%% \verb=#pragma omp barrier;= to gather all the correct values of
+%% $\Delta z$, thus allowing the computation the maximum stop condition
+%% on vector $\Delta z$ (line 12, Algorithm
+%% \ref{alg2-cuda-openmp}). Finally, threads copy the results from GPU
+%% memories to CPU memory. The OpenMP threads execute kernels until the
+%% roots sufficiently converge.
+
+
+\begin{algorithm}[h]
+\label{alg2-cuda-openmp}
+\LinesNumbered
+\SetAlgoNoLine
+\caption{CUDA-OpenMP Algorithm to find roots with the Ehrlich-Aberth method}
+
+\KwIn{$Z^{0}$ (Initial root's vector), $\varepsilon$ (Error tolerance
+ threshold), P (Polynomial to solve), Pu (Derivative of P), $n$ (Polynomial degree), $\Delta z$ ( Vector of errors for stop condition), $num\_gpus$ (number of OpenMP threads/ Number of GPUs), $Size$ (number of roots)}
+
+\KwOut {$Z$ ( Root's vector), $ZPrec$ (Previous root's vector)}
+
+\BlankLine
+
+Initialization of P\;
+Initialization of Pu\;
+Initialization of the solution vector $Z^{0}$\;
+Start of a parallel part with OpenMP (Z, $\Delta z$, P are shared variables)\;
+gpu\_id=cudaGetDevice()\;
+Allocate memory on GPU\;
+Compute local size and offet according to gpu\_id\;
+\While {$error > \epsilon$}{
+ copy Z from CPU to GPU\;
+$ ZPrec_{loc}=kernel\_save(Z_{loc})$\;
+$ Z_{loc}=kernel\_update(Z,P,Pu)$\;
+$\Delta z[gpu\_id] = kernel\_testConv(Z_{loc},ZPrec_{loc})$\;
+$ error= Max(\Delta z)$\;
+ copy $Z_{loc}$ from GPU to Z in CPU
+}
+\end{algorithm}
+
+
+
+\subsection{an MPI-CUDA approach}
+%\begin{figure}[htbp]
+%\centering
+ % \includegraphics[angle=-90,width=0.2\textwidth]{MPI-CUDA}
+%\caption{The MPI-CUDA architecture }
+%\label{fig:03}
+%\end{figure}
+Our parallel implementation of EA to find root of polynomials using a CUDA-MPI approach is a data parallel approach. It splits input data of the polynomial to solve among MPI processes. In Algorithm \ref{alg2-cuda-mpi}, input data are the polynomial to solve $P$, the solution vector $Z$, the previous solution vector $ZPrev$, and the value of errors of stop condition $\Delta z$. Let $p$ denote the number of MPI processes on and $n$ the degree of the polynomial to be solved. The algorithm performs a simple data partitioning by creating $p$ portions, of at most $\lceil n/p \rceil$ roots to find per MPI process, for each $Z$ and $ZPrec$. Consequently, each MPI process of rank $k$ will have its own solution vector $Z_{k}$ and $ZPrec$, the error related to the stop condition $\Delta z_{k}$, enabling each MPI process to compute $\lceil n/p \rceil$ roots.
+
+Since a GPU works only on data already allocated in its memory, all local input data, $Z_{k}$, $ZPrec$ and $\Delta z_{k}$, must be transferred from CPU memories to the corresponding GPU memories. Afterwards, the same EA algorithm (Algorithm \ref{alg1-cuda}) is run by all processes but on different polynomial subset of roots $ p(x)_{k}=\sum_{i=1}^{n} a_{i}x^{i}, k=1,...,p$. Each MPI process executes the loop \verb=(While(...)...do)= containing the CUDA kernels but each MPI process computes only its own portion of the roots according to the rule ``''owner computes``''. The local range of roots is indicated with the \textit{index} variable initialized at (line 5, Algorithm \ref{alg2-cuda-mpi}), and passed as an input variable to $kernel\_update$ (line 10, Algorithm \ref{alg2-cuda-mpi}). After each iteration, MPI processes synchronize (\verb=MPI_Allreduce= function) by a reduction on $\Delta z_{k}$ in order to compute the maximum error related to the stop condition. Finally, processes copy the values of new computed roots from GPU memories to CPU memories, then communicate their results to other processes with \verb=MPI_Alltoall= broadcast. If the stop condition is not verified ($error > \epsilon$) then processes stay withing the loop \verb= while(...)...do= until all the roots sufficiently converge.
+
+\begin{algorithm}[htpb]
+\label{alg2-cuda-mpi}
+%\LinesNumbered
+\caption{CUDA-MPI Algorithm to find roots with the Ehrlich-Aberth method}
+
+\KwIn{$Z^{0}$ (Initial root's vector), $\varepsilon$ (Error tolerance
+ threshold), P (Polynomial to solve), Pu (Derivative of P), $n$ (Polynomial degrees), $\Delta z$ ( error of stop condition), $num_gpus$ (number of MPI processes/ number of GPUs), Size (number of roots)}
+
+\KwOut {$Z$ (Solution root's vector), $ZPrec$ (Previous solution root's vector)}
+
+\BlankLine
+Initialization of P\;
+Initialization of Pu\;
+Initialization of the solution vector $Z^{0}$\;
+Distribution of Z\;
+Allocate memory to GPU\;
+\While {$error > \epsilon$}{
+copy Z from CPU to GPU\;
+$ZPrec_{loc}=kernel\_save(Z_{loc})$\;
+$Z_{loc}=kernel\_update(Z,P,Pu)$\;
+$\Delta z=kernel\_testConv(Z_{loc},ZPrec_{loc})$\;
+$error=MPI\_Reduce(\Delta z)$\;
+Copy $Z_{loc}$ from GPU to CPU\;
+$Z=MPI\_AlltoAll(Z_{loc})$\;
+}
+\end{algorithm}
+
+
+\section{Experiments}
+\label{sec5}
+We study two categories of polynomials: sparse polynomials and full polynomials.\\
+{\it A sparse polynomial} is a polynomial for which only some coefficients are not null. In this paper, we consider sparse polynomials for which the roots are distributed on 2 distinct circles:
+\begin{equation}
+ \forall \alpha_{1} \alpha_{2} \in C,\forall n_{1},n_{2} \in N^{*}; P(z)= (z^{n_{1}}-\alpha_{1})(z^{n_{2}}-\alpha_{2})
+\end{equation}\noindent
+{\it A full polynomial} is, in contrast, a polynomial for which all the coefficients are not null. A full polynomial is defined by:
+%%\begin{equation}
+ %%\forall \alpha_{i} \in C,\forall n_{i}\in N^{*}; P(z)= \sum^{n}_{i=1}(z^{n^{i}}.a_{i})
+%%\end{equation}