-Most of the numerical methods that deal with the polynomial root-finding problem are simultaneous methods, \textit{i.e.} the iterative methods to find simultaneous approximations of the $n$ polynomial roots. These methods start from the initial approximations of all $n$ polynomial roots and give a sequence of approximations that converge to the roots of the polynomial. Two examples of well-known simultaneous methods for root-finding problem of polynomials are Durand-Kerner method~\cite{Durand60,Kerner66} and Ehrlich-Aberth method~\cite{Ehrlich67,Aberth73}.
-
-
-The convergence time of simultaneous methods drastically increases with the increasing of the polynomial's degree. the great challenges with simultaneous methods is the primordial need to parallelize it and will improve the convergence time. Many authors have treated to
-implement simultaneous methods in parallel.
-Many authors have treated to implement simultaneous methods in parallel(~\cite{Freeman89},~\cite{Loizou83}, ~\cite{Freemanall90}, ~\cite{Raphaelall01},~\cite{Couturier02}), using several paradigms of parallelization (synchronous or asynchronous calculus, mechanism of shared or distributed memory,...).
-%but they can not able to solve very high polynomial's degree exceed to 100,000.
-They are able to solve only polynomial's degree not exceed 20,000.
+Most of the numerical methods that deal with the polynomial
+root-finding problems are simultaneous methods, \textit{i.e.} the
+iterative methods to find simultaneous approximations of the $n$
+polynomial roots. These methods start from the initial approximation
+of all $n$ polynomial roots and give a sequence of approximations that
+converge to the roots of the polynomial. Two examples of well-known
+simultaneous methods for root-finding problem of polynomials are
+the Durand-Kerner method~\cite{Durand60,Kerner66} and the Ehrlich-Aberth method~\cite{Ehrlich67,Aberth73}.
+
+
+The convergence time of simultaneous methods drastically increases
+with the increasing of the polynomial's degree. The great challenge
+with simultaneous methods is to parallelize them and to improve their
+convergence. Many authors have proposed parallel simultaneous
+methods~\cite{Freeman89,Loizou83,Freemanall90,bini96,cs01:nj,Couturier02},
+using several paradigms of parallelization (synchronous or
+asynchronous computations, mechanism of shared or distributed memory,
+etc). However, so fat until now, only polynomials not exceeding
+degrees of less than 100,000 have been solved.