+%We introduced three paradigms of parallel programming. Our objective consists in implementing a root finding polynomial algorithm on multiple GPUs. To this end, it is primordial to know how to manage CUDA contexts of different GPUs. A direct method for controlling the various GPUs is to use as many threads or processes as GPU devices. We can choose the GPU index based on the identifier of OpenMP thread or the rank of the MPI process. Both approaches will be investigated.
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\section{The Ehrlich-Aberth algorithm on a GPU}
+\label{sec3}
+
+\subsection{The Ehrlich-Aberth method}
+%A cubically convergent iteration method to find zeros of
+%polynomials was proposed by O. Aberth~\cite{Aberth73}. The
+%Ehrlich-Aberth (EA is short) method contains 4 main steps, presented in what
+%follows.
+
+%The Aberth method is a purely algebraic derivation.
+%To illustrate the derivation, we let $w_{i}(z)$ be the product of linear factors
+
+%\begin{equation}
+%w_{i}(z)=\prod_{j=1,j \neq i}^{n} (z-x_{j})
+%\end{equation}
+
+%And let a rational function $R_{i}(z)$ be the correction term of the
+%Weistrass method~\cite{Weierstrass03}
+
+%\begin{equation}
+%R_{i}(z)=\frac{p(z)}{w_{i}(z)} , i=1,2,...,n.
+%\end{equation}
+
+%Differentiating the rational function $R_{i}(z)$ and applying the
+%Newton method, we have:
+
+%\begin{equation}
+%\frac{R_{i}(z)}{R_{i}^{'}(z)}= \frac{p(z)}{p^{'}(z)-p(z)\frac{w_{i}(z)}{w_{i}^{'}(z)}}= \frac{p(z)}{p^{'}(z)-p(z) \sum _{j=1,j \neq i}^{n}\frac{1}{z-x_{j}}}, i=1,2,...,n
+%\end{equation}
+%where R_{i}^{'}(z)is the rational function derivative of F evaluated in the point z
+%Substituting $x_{j}$ for $z_{j}$ we obtain the Aberth iteration method.%
+
+
+%\subsubsection{Polynomials Initialization}
+%The initialization of a polynomial $p(z)$ is done by setting each of the $n$ complex coefficients %$a_{i}$:
+
+%\begin{equation}
+%\label{eq:SimplePolynome}
+% p(z)=\sum{a_{i}z^{n-i}} , a_{n} \neq 0,a_{0}=1, a_{i}\subset C
+%\end{equation}
+
+
+%\subsubsection{Vector $Z^{(0)}$ Initialization}
+%\label{sec:vec_initialization}
+%As for any iterative method, we need to choose $n$ initial guess points $z^{0}_{i}, i = 1, . . . , %n.$
+%The initial guess is very important since the number of steps needed by the iterative method to %reach
+%a given approximation strongly depends on it.
+%In~\cite{Aberth73} the Ehrlich-Aberth iteration is started by selecting $n$
+%equi-distant points on a circle of center 0 and radius r, where r is
+%an upper bound to the moduli of the zeros. Later, Bini and al.~\cite{Bini96}
+%performed this choice by selecting complex numbers along different
+%circles which relies on the result of~\cite{Ostrowski41}.
+
+%\begin{equation}
+%\label{eq:radiusR}
+%%\begin{align}
+%\sigma_{0}=\frac{u+v}{2};u=\frac{\sum_{i=1}^{n}u_{i}}{n.max_{i=1}^{n}u_{i}};
+%v=\frac{\sum_{i=0}^{n-1}v_{i}}{n.min_{i=0}^{n-1}v_{i}};\\
+%%\end{align}
+%\end{equation}
+%Where:
+%\begin{equation}
+%u_{i}=2.|a_{i}|^{\frac{1}{i}};
+%v_{i}=\frac{|\frac{a_{n}}{a_{i}}|^{\frac{1}{n-i}}}{2}.
+%\end{equation}
+
+%\subsubsection{Iterative Function}
+%The operator used by the Aberth method corresponds to the
+%equation~\ref{Eq:EA1}, it enables the convergence towards
+%the polynomials zeros, provided all the roots are distinct.
+
+%Here we give a second form of the iterative function used by the Ehrlich-Aberth method:
+
+%\begin{equation}
+%\label{Eq:EA1}
+%EA: z^{k+1}_{i}=z_{i}^{k}-\frac{\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}}
+%{1-\frac{p(z_{i}^{k})}{p'(z_{i}^{k})}\sum_{j=1,j\neq i}^{j=n}{\frac{1}{(z_{i}^{k}-z_{j}^{k})}}}, %i=1,. . . .,n
+%\end{equation}
+
+%\subsubsection{Convergence Condition}
+%The convergence condition determines the termination of the algorithm. It consists in stopping the %iterative function when the roots are sufficiently stable. We consider that the method converges %sufficiently when:
+
+%\begin{equation}
+%\label{eq:Aberth-Conv-Cond}
+%\forall i \in [1,n];\vert\frac{z_{i}^{k}-z_{i}^{k-1}}{z_{i}^{k}}\vert<\xi
+%\end{equation}