-The issue of finding the roots of polynomials of very high
-degrees arises in many complex problems in various fields,
-such as algebra, biology, finance, physics or climatology [1].
-In algebra for example, finding eigenvalues or eigenvectors of
-any real/complex matrix amounts to that of finding the roots
-of the so-called characteristic polynomial.
-
-The root-finding problem consists in finding the $n$ different values of the unknown variable $x$ for which $p(x)=0$. Such values are called zeros or roots of $p$. If zeros are $\{\alpha_{i}\}_{1\leq i\leq n}$, then $p(x)$ can be written as :
-\begin{equation}
- p(x)=\sum_{i=0}^{n}{a_ix^i}=a_n\prod_{i=1}^n(x-\alpha_i), a_0 a_n\neq 0.
-\end{equation}
-%\LZK{C'est $a_n\neq 0$ (polynôme de degré $n$) et non pas $a_0 a_n\neq 0$, non?}
-%\LZK{Est-ce $\alpha_i$ sont les $z_i$ définis dans la suite du papier?}