-The main problem of the simultaneous methods is that the necessary time needed for the convergence increases with the increasing of the polynomial's degree. Many authors have treated the problem of implementing simultaneous methods in parallel. Freeman~\cite{Freeman89} implemented and compared DK, EA and another method of the fourth order proposed by Farmer and Loizou~\cite{Loizou83} \LZK{of the fourth order ?? \color{red}{of convergence} \\ Sinon peut on donner et citer le nom de la 3ième méthode?\color{red}{Farmer-Loizou method}} on a 8-processor linear chain, for polynomials of degree up-to 8.
-The third method often diverges, \LZK{C'est mieux de donner le nom de cette 3ième méthode} but the first two methods have a speed-up equals to 5.5. Later, Freeman and Bane~\cite{Freemanall90} considered asynchronous algorithms, in which each processor continues to update its approximations even though the latest values of other $z^{k}_{i}$ have not been received from the other processors, in contrast with synchronous algorithms where it would wait those values before making a new iteration. Couturier et al.~\cite{Raphaelall01} proposed two methods of parallelization for a shared memory architecture with \textit{OpenMP} and for a distributed memory one with \textit{MPI}. They are able to compute the roots of sparse polynomials of degree 10,000 in 116 seconds with \textit{OpenMP} and 135 seconds with \textit{MPI} only by using 8 personal computers and 2 communications per iteration. \LZK{je suppose que c'est pour la version mpi (only by using 8 personal computers and 2 communications per iteration). A t on utilisé le même nombre de procs pour les deux versions openmp et mpi} The authors showed an interesting speedup comparing to the sequential implementation that takes up-to 3,300 seconds to obtain same results.
-
-Very few work had been performed since then until the appearing of the Compute Unified Device Architecture (CUDA)~\cite{CUDA10}, a parallel computing platform and a programming model invented by NVIDIA. The computing power of GPUs (Graphics Processing Unit) has exceeded that of CPUs. However, CUDA adopts a totally new computing architecture to use the hardware resources provided by the GPU in order to offer a stronger computing ability to the massive data computing. Ghidouche and al~\cite{Kahinall14} proposed an implementation of the Durand-Kerner method on a single GPU. Their main results showed that a parallel CUDA implementation is about 10 times faster than the sequential implementation on a single CPU for sparse polynomials of degree 48,000.
-
-Finding polynomial roots rapidly and accurately is the main objective of our work. In this paper we propose the parallelization of Ehrlich-Aberth method using two parallel programming paradigms OpenMP and MPI on multi-GPU platforms. {\color{red}{We consider two architectures: shared-memory computers with OpenMP API and distributed-memory computers with MPI API. The first approach is based on threads from the same system process, with each thread attached to one GPU and after the various memory allocations, each thread launches its part of computations. To do this we must first load on the GPU required data and after the computations are carried, repatriate the result on the host. The second approach i.e distributed memory with MPI relies on the MPI library which is often used for parallel programming~\cite{Peter96} in
-cluster systems because it is a message-passing programming language. Each GPU is attached to one MPI process, and a loop is in charge of the distribution of tasks between the MPI processes. This solution can be used on one GPU, or executed on a distributed cluster of GPUs, employing the Message Passing Interface (MPI) to communicate between separate CUDA cards. This solution permits scaling of the problem size to larger classes than would be possible on a single device and demonstrates the performance which users might expect from future HPC architectures where accelerators are deployed.}}
-\LZK{Trop détaillé et mal expliqué. \\ We consider two architectures: shared-memory and distributed-memory computers. The first parallel algorithm is implemented on shared-memory computers by using OpenMP API. It is based on threads created from the same system process, such that each thread is attached to one GPU. In this case the communications between GPUs are done by OpenMP threads through shared memory. The second parallel algorithm uses the MPI API, such that each GPU is attached and managed by a MPI process. The GPUs exchange their data by message-passing communications. This latter approach is more used on distributed-memory clusters to solve very complex problems that are too large for traditional supercomputers, which are very expensive to build and run.}
+The main problem of the simultaneous methods is that the necessary
+time needed for the convergence increases with the increasing of the
+polynomial's degree. Many authors have treated the problem of
+implementing simultaneous methods in
+parallel. Freeman~\cite{Freeman89} implemented and compared
+Durand-Kerner method, Ehrlich-Aberth method and another method of the
+fourth order of convergence proposed by Farmer and
+Loizou~\cite{Loizou83} on a 8-processor linear chain, for polynomials
+of degree up-to 8. The method of Farmer and Loizou~\cite{Loizou83}
+often diverges, but the first two methods (Durand-Kerner and
+Ehrlich-Aberth methods) have a speed-up equals to 5.5. Later, Freeman
+and Bane~\cite{Freemanall90} considered asynchronous algorithms in
+which each processor continues to update its approximations even
+though the latest values of other approximations $z^{k}_{i}$ have not
+been received from the other processors, in contrast with synchronous
+algorithms where it would wait those values before making a new
+iteration. Couturier et al.~\cite{Raphaelall01} proposed two methods
+of parallelization for a shared memory architecture with OpenMP and
+for a distributed memory one with MPI. They are able to compute the
+roots of sparse polynomials of degree 10,000 in 116 seconds with
+OpenMP and 135 seconds with MPI only by using 8 personal computers and
+2 communications per iteration. \RC{si on donne des temps faut donner
+ le proc, comme c'est vieux à mon avis faut supprimer ca, votre avis?} The authors showed an interesting
+speedup comparing to the sequential implementation which takes up-to
+3,300 seconds to obtain same results.
+\LZK{``only by using 8 personal computers and 2 communications per iteration''. Pour MPI? et Pour OpenMP: Rep: c'est MPI seulement}
+
+Very few work had been performed since then until the appearing of the Compute Unified Device Architecture (CUDA)~\cite{CUDA15}, a parallel computing platform and a programming model invented by NVIDIA. The computing power of GPUs (Graphics Processing Units) has exceeded that of traditional processors CPUs. However, CUDA adopts a totally new computing architecture to use the hardware resources provided by the GPU in order to offer a stronger computing ability to the massive data computing. Ghidouche et al.~\cite{Kahinall14} proposed an implementation of the Durand-Kerner method on a single GPU. Their main results showed that a parallel CUDA implementation is about 10 times faster than the sequential implementation on a single CPU for sparse polynomials of degree 48,000.
+
+%Finding polynomial roots rapidly and accurately is the main objective of our work. In this paper we propose the parallelization of Ehrlich-Aberth method using two parallel programming paradigms OpenMP and MPI on multi-GPU platforms. We consider two architectures: shared memory and distributed memory computers. The first parallel algorithm is implemented on shared memory computers by using OpenMP API. It is based on threads created from the same system process, such that each thread is attached to one GPU. In this case the communications between GPUs are done by OpenMP threads through shared memory. The second parallel algorithm uses the MPI API, such that each GPU is attached and managed by a MPI process. The GPUs exchange their data by message-passing communications. This latter approach is more used on distributed memory clusters to solve very complex problems that are too large for traditional supercomputers, which are very expensive to build and run.
+%\LZK{Cette partie est réécrite. \\ Sinon qu'est ce qui a été fait pour l'accuracy dans ce papier (Finding polynomial roots rapidly and accurately is the main objective of our work.)?}
+%\LZK{Les contributions ne sont pas définies !!}
+
+In this paper we propose the parallelization of Ehrlich-Aberth method using two parallel programming paradigms OpenMP and MPI on CUDA multi-GPU platforms. Our CUDA/MPI and CUDA/OpenMP codes are the first implementations of Ehrlich-Aberth method with multiple GPUs for finding roots of polynomials. Our major contributions include:
+\LZK{Pourquoi la méthode Ehrlich-Aberth et pas autres? the Ehrlich-Aberth have very good convergence and it is suitable to be implemented in parallel computers.}
+ \begin{itemize}
+ \item An improvements for the Ehrlich-Aberth method using the exponential logarithm in order to be able to solve sparse and full polynomial of degree up to 1, 000, 000.\RC{j'ai envie de virer ca, car c'est pas la nouveauté dans ce papier}
+ \item A parallel implementation of Ehrlich-Aberth method on single GPU with CUDA.\RC{idem}
+\item The parallel implementation of Ehrlich-Aberth algorithm on a multi-GPU platform with a shared memory using OpenMP API. It is based on threads created from the same system process, such that each thread is attached to one GPU. In this case the communications between GPUs are done by OpenMP threads through shared memory.
+\item The parallel implementation of Ehrlich-Aberth algorithm on a multi-GPU platform with a distributed memory using MPI API, such that each GPU is attached and managed by a MPI process. The GPUs exchange their data by message-passing communications. This latter approach is more used on clusters to solve very complex problems that are too large for traditional supercomputers, which are very expensive to build and run.
+ \end{itemize}
+\LZK{Pas d'autres contributions possibles?: j'ai rajouté 2}
+
+%This paper is organized as follows. In Section~\ref{sec2} we recall the Ehrlich-Aberth method. In section~\ref{sec3} we present EA algorithm on single GPU. In section~\ref{sec4} we propose the EA algorithm implementation on Multi-GPU for (OpenMP-CUDA) approach and (MPI-CUDA) approach. In sectioné\ref{sec5} we present our experiments and discus it. Finally, Section~\ref{sec6} concludes this paper and gives some hints for future research directions in this topic.}
+
+The paper is organized as follows. In Section~\ref{sec2} we present three different parallel programming models OpenMP, MPI and CUDA. In Section~\ref{sec3} we present the implementation of the Ehrlich-Aberth algorithm on a single GPU. In Section~\ref{sec4} we present the parallel implementations of the Ehrlich-Aberth algorithm on Multi-GPU using the OpenMP and MPI approaches. In section\ref{sec5} we present our experiments and discus it. Finally, Section~\ref{sec6} concludes this paper and gives some hints for future research directions in this topic.
+%\LZK{A revoir toute cette organization: je viens de la revoir}
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%