+In this paper, we have presented a parallel implementation of Ehrlich-Aberth algorithm for solving full and sparse polynomials, on single GPU with CUDA and on Multi-GPUs using two parallel paradigm, shared memory with OpenMP, distributed memory with MPI.(CUDA-OpenMP) approach and (CUDA-MPI) approach,
+We have performed many experiments with the Ehrlich-Aberth method in single GPU, Multi-GPU with (CUDA-OpenMP) approach, Multi-GPU with (CUDA-MPI) approach for sparse and full polynomials. the experiments show that, using parallel programming model like (OpenMP, MPI) can efficiently manage multiple graphics cards to work together to solve the same problem and accelerate parallel applications, like (CUDA MPI) approach with 4 GPUs can solve a polynomial of 1,000,000 4 speed up than on single GPU.
+
+
+%In future, we will evaluate our parallel implementation of Ehrlich-Aberth algorithm on other parallel programming model
+
+Our next objective is to extend the model presented here at nodes clusters frame multi-GPU , with a three-level scheme: inter-node communication via MPI processes (distributed memory), management of multi-GPU node by OpenMP threads (shared memory).
+
+%present a communication approach between multiple GPUs. The comparison between MPI and OpenMP as GPUs controllers shows that these
+%solutions can effectively manage multiple graphics cards to work together
+%to solve the same problem
+
+
+ %than we have presented two communication approach between multiple GPUs.(CUDA-OpenMP) approach and (CUDA-MPI) approach, in the objective to manage multiple graphics cards to work together and solve the same problem. in the objective to manage multiple graphics cards to work together and solve the same problem.